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Abstract

Business Process Management is a multifaceted approach covering several aspects of
organizational, management and technical facets of business processes. Recently, this
technology gained great attention in the field of many different industries including the
finance industry or the energy domain where computational resources are used to carry
out business processes automatically. Business processes are composed from human or
software-based services. Especially in larger companies, an extensive number of different
processes are available, each made up from various process steps which are realized by
software services, each needing a different amount of resources. As the amount of process
instances to be executed varies over time, a Business Process Management System is
needed which is able to serve the ever-changing demand of needed resources. For example,
the amount of required resources during peak times will be much higher than during
off-peak times. Permanent provisioning of resources is obviously not the best choice, as
resources which are able to handle peak loads will hardly be used during off-peak times.
Hence, this leads unwanted high cost (i.e., over-provisioning). Contrary, providing less
resources may lead to an under-provisioned system, which might not be able to carry
out all processes during peak times or will suffer from a low Quality of Service. With
the upcoming of cloud computing, it is possible (i) to lease and release resources in an
on-demand, utility-like fashion, and to provide the means of (ii) rapid elasticity through
scaling the infrastructure up or down, based on (iii) pay-per-use through metered service.
However, so far, only few researchers have provided methods and solutions to facilitate
Elastic Processes, i.e., processes which are carried out on cloud-based resources while
considering all three dimensions of elasticity: resource, quality and cost.

Hence, this thesis presents novel approaches to apply cloud-based computational
resources for Business Process Management. First, we show how leased resources can
be used more efficiently if the process’ future resource demand is considered during
scheduling and resource allocation. Second, by constantly extending this approach,
we present a cost-based optimization model for sequential business processes. As in
real-world complex business processes are more realistically, we present afterwards a
multi-objective optimization model for complex business processes. Finally, we introduce
an extension to this model, allowing to lease resources from a public and private cloud
equally, leading to a hybrid cloud environment. We evaluate our approaches extensively
and compare the results against state of the art baselines in order to show its potential
of reducing process execution time and avoiding unnecessary cost while still ensuring
Service Level Agreements.
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Kurzfassung

Geschäftsprozess-Management ist ein vielschichtiger Ansatz, der sich mit der Gestaltung,
Implementierung und Steuerung von Geschäftsprozessen beschäftigt. Zuletzt erlangte diese
Technologie große Aufmerksamkeit in vielen verschiedenen Branchen, wie insbesondere
in der Finanz- und Energiebranche, in der Rechenressourcen für die Automatisierung
von Geschäftsprozessen verwendet werden. Geschäftsprozesse bestehen in der Regel
aus Mensch- oder Software-basierten Diensten. Vor allem in großen Unternehmen ist
es üblich, dass eine Vielzahl verschiedener Geschäftsprozesse zur Verfügung steht, die
zum Teil aus rechenintensiven Software-basierten Diensten bestehen. Da die Menge
der Prozessinstanzen, die ausgeführt werden sollen, variiert, wird ein Geschäftsprozess-
Management-Programm benötigt, das in der Lage ist, die ständig wechselnden Anfragen
zu beantworten und deren Ausführung zu steuern. Es ist offensichtlich, dass die Anzahl
der benötigten Ressourcen zu Spitzenzeiten höher ist als zu weniger intensiv genutzten
Zeiten. Aus diesem Grund ist eine permanente Bereitstellung von Rechenressourcen
nicht die beste Wahl, denn Ressourcen, die in der Lage sind Spitzenlasten zu tragen,
werden außerhalb dieser Zeiten kaum benützt. Dies führt zu unerwünscht hohen Kosten.
Andererseits kann es, wenn zu wenige Ressourcen zur Verfügung stehen, zu einer niedrigen
Dienstgüterqualität kommen. Mit dem Aufkommen von Cloud Computing, ist es nun
möglich: (i) Rechenressourcen nur bei Bedarf zu mieten, und (ii) die Infrastruktur schnell
nach oben oder unten zu skalieren, während nur die gemieteten Ressourcen bezahlt
werden müssen. Bisher haben jedoch nur wenige Wissenschaftler an der Realisierung
von Elastischen Prozessen - Prozessen, die auf Cloud-basierten Ressourcen ausgeführt
werden - gearbeitet. Bei diesen sind drei Dimensionen der Elastizität zu berücksichtigen:
Ressource, Qualität und Kosten-Elastizität.

In dieser Arbeit werden neue Ansätze präsentiert, um Geschäftsprozesse auf Cloud-
basierten Ressourcen auszuführen: Der erste Teil der Arbeit zeigt, wie die geleasten
Ressourcen effizient genutzt werden können. Anschließend wird ein kostenbasiertes Opti-
mierungsmodell für sequentielle Geschäftsprozesse dargestellt. Da jedoch in der realen
Welt komplexe Geschäftsprozesse realistischer sind, soll dieser Ansatz erweitert werden
und ein “Multi-Objective” Optimierungsmodel für komplexe Geschäftsprozesse erstellt
werden. Anschließend wird gezeigt, wie dieses Optimierungsmodel erweitert werden kann,
um Geschäftsprozesse in einer Hybrid Cloud auszuführen. Diese Ansätze werden intensiv
evaluiert und die Ergebnisse mit Baselines verglichen, die dem aktuellen Stand der Tech-
nik entsprechen. In der vorliegenden Arbeit wird sich zeigen, dass mit diesem Ansatz
Ausführungszeit und Kosten verringert werden können.
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CHAPTER 1
Introduction

Business Process Management (BPM) is a field in operations management covering
different aspects of organizational, management and techniques of business processes.
According to van der Aalst et al., BPM “includes methods, techniques, and tools to support
the design, enactment, management, and analysis of operational business processes” [110].
Business processes are generally composed of different services, involving human-provided
as well as software-based services, in order to present and realize a particular business logic
or product [92]. In several different industrial sectors, BPM has gained more attention in
the last few years. For example, in the financial industry where trade settlement and
execution control are meant to be carried out automatically [40], as well as in the energy
domain where data has to be collected from a very large number of sensors and processed
in almost real-time [91, 93].

One of the most important aspects of BPM is the automatic execution of processes
using computational resources which are referred as workflows[74]. Notably, within the
remainder of this work, we stick to the term business processes before getting executed and
elastic processes or processes when executed using cloud-based computational resources.
Doing so, efficient and effective resource allocation is a key issue in elastic process
executions and a Business Process Management System (BPMS) has to be able to
administrate, schedule and execute several hundreds or thousands of process instances
simultaneously. In order to do so, a BPMS has to assign computational resources to
each task involved in the processes. Due to the nature of software-based services and
their functional diversity, the demand of computational resources varies. Especially if
a large amount of data has to be processed in a short time under a specified Quality
of Service (QoS), service executions may be very resources and time-intensive. Further,
due to different priority levels, some processes need to be carried out immediately, while
others may run regularly and others may be postponed to a certain point in the future
adhering to a specific deadline. Naturally, the computational resources needed for process
executions are subject to temporal variations, i.e., the amount of needed computational
resources during peak time, may be much higher than during off-peak times [32].
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Figure 1.1: Fixed Resources vs. Cloud Provisioning

1.1 Problem Statement

A common service provider problem is that the traditional permanent provisioning of
fixed computing capacities (e.g., traditional data centers) may reach its limits when
cost- and quality-efficiency should be achieved [5]. As it can be seen in Figure 1.1, the
provisioning of fixed resources that are able to handle peak loads may hardly be used
during off-peak times, which may lead to very high cost (over-provisioning, shown in
red in Figure 1.1a). Contrary to that, during peak times, some processes may not be
carried out at all, or with an unacceptable level of QoS, if there is a shortage of resources
(under-provisioning, shown in red Figure 1.1b).

With the emergence of cloud computing, it is nowadays possible to use computational
resources in an on-demand, utility-like fashion, while the risk of over- or under-provisioning
can be prevented [18] (Figure 1.1c). The virtually unlimited amount of leasable cloud-
based computational resources is especially promising for business process enactments as
such resources can be acquired on-demand in a self-service way. Further, the underlying
cloud infrastructure provides the possibility to scale up and down by adding or removing
resources (rapid elasticity) [79]. Executing business processes using cloud resources
can be called elastic processes [32, 79], i.e., reflecting the three major benefits of cloud
computing: (i) Rapid elasticity of single processes as well as the process landscape based
on the actual demand for computational resources, (ii) leasing and releasing the needed
computational resources in an on-demand, utility-like fashion, and (iii) pay-per-use of
the resources through metered service.

With these new possibilities, also new challenges and responsibilities came up for
BPMSs [98]. Scheduling process instances among cloud-based resources, which can be
leased and released in a dynamic way, is a much more complex task than creating a
scheduling plan on a fixed limited amount. As it is possible that process instances may
be requested ad hoc, i.e., after the scheduling plan was created, the BPMS needs to
be able to react in time to the ever-changing demand for resources. Creating such a
scheduling plan needs to take into account the individual Service Level Agreements
(SLAs) of processes, such as deadlines, execution times, or other QoS attributes, as well
as the current process landscape, available resources, and the amount of queued process
instances, i.e., those which are meant to be executed in the near future. Beside of creating
such a scheduling plan, the BPMS is also responsible that the schedule is carried out and

2



resources are allocated accordingly. By the nature of such systems, one cannot rule out
the possibility that unexpected errors occurs. Therefore, the BPMS needs to monitor the
actual execution in order to conduct countermeasures in the case of service or resource
failures.

To the best of our knowledge, in literature and practice, surprisingly little effort has
been investigated in the field of business process execution using cloud resources in order
to realize Elastic Processes [4, 32]. Current approaches mostly consider only single service
[18, 63, 71] for scaling resources. Only a few researchers have already addressed the topic
of business processes or scientific workflows in the cloud [53]. In addition, the work so
far on business processes mainly considers a single process instances a time neglecting
the possibility to share services instances and resources among others [9, 52, 117]. Hence,
new techniques for running business processes in the cloud in order to realize elastic
processes are needed.

1.2 Research Question
The research conducted throughout this thesis has been motivated by the challenges
identified in Section 1.1, i.e., the functionalities a BPMS needs to provide when business
processes are executed on cloud-based computational resources. Hence, in this work, we
address the following research questions:

Research Question I:
How can cloud-based resources be used for business process management in a

cost-efficient way?

As discussed in Section 1.1, cloud-based computational resources can be used to address
the problem of under- and over-provisioning when executing business processes. However,
to make use of cloud-based resources, BPM becomes more complex than for fixed-
provisioned resources. First, a BPMS in the cloud has to be able to lease and release
cloud resources on-demand and deploy the required services among it. Second, the BPMS
has to create a scheduling plan for the process executions, i.e., a detailed plan defining
when a particular process instance needs to be carried out. For that, the scheduling
plan needs to take into account the process’ deadline and other QoS attributes. Third,
the BPMS has to ensure that the scheduling plan is carried out and allocate required
resources to single services and service instances accordingly. Last but not least, the
BPMS needs to conduct countermeasures in the case of service or resources failures.

Existing work mostly proposed scheduling solutions where full resources were allocated
for a single process instance. However, as it is very likely that several different instances
of a particular business process may be executed simultaneously, sharing services and
resources among them will eventually lead to less cost. Hence, a BPMS needs to consider
the full process landscape at once during scheduling and executions. This means, the
BPMS should be able to handle several process instances of the same, or different time,
allocate resources to services and create a detailed scheduling plan about where and what
service needs to be invoked at what time in order to fulfill a particular process instance.
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Research Question II:
How can leasing cloud-based resources be optimized for enacting complex business

processes?

Since a different amount of business processes may be requested at any time, the
demand of computational resources is under a continuous change. Hence, utilizing cloud-
based computational resources for business process enactments may lead to cost savings.
However, the more complex business processes get, the more complex is the leasing
and scheduling process. Complex business processes comprise different process patterns,
including (but not limited to) AND-block, XOR-block or Repeat loops. These have to be
handled specifically during scheduling and resource planning as the process’ future is not
deterministic. Hence, new techniques for utilizing cloud-based computational resources
for complex business process enactments are needed.

Research Question III:
What problems need to be considered when executing complex business processes in a

hybrid cloud environment?

Nowadays a wide range of different cloud providers are available on the market
(Amazon Web Services (AWS)1, Windows Azure2, Google Cloud Computing3). Each
provider offers different services with different SLAs of a different price. Beside of
having the possibility to have even more resources available by combining different
cloud providers, depending on the current need, it may be useful to lease resources
simultaneously from various cloud providers leading to a hybrid cloud environment.
Enacting business processes in a hybrid cloud will lead to new challenges as different cost
types and pricing models as well as privacy aspects have to be considered.

1.3 Scientific Contribution
Guided by the research questions stated in Section 1.3, throughout this thesis we made
the following scientific contributions to the state of the art of BPM:

Contribution I:
A reasoning and scheduling algorithm for sequential elastic processes.

When enacting business processes in the cloud, a BPMS has to account for scheduling
and resource allocation equally. For doing this efficiently, the BPMS has to look into
the future, i.e., plan ahead. We present first a reasoning and scheduling algorithm for
sequential business processes which takes into account the near future. Hence, during
the scheduling, the BPMS is able to pre-pone future process steps and use resources
more efficiently. This algorithm will be implemented in a prototype. For that, we reuse

1https://aws.amazon.com
2https://azure.microsoft.com
3https://cloud.google.com
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Vienna Platform for Elastic Processes (ViePEP) from [97] and extend the framework.
The extension will be evaluated running different scenarios and comparing it against a
state of the art baseline. Details are presented in Chapter 4. Contribution I was originally
presented in [44].

Contribution II:
A cost-based optimization model and heuristic for sequential elastic processes.

The result of the reasoning and scheduling algorithm from Contribution I may or
may not lead to an optimal and cost-efficient solution. Hence, we introduce a novel
optimization model for sequential elastic processes which aims at cost-efficiency. Again,
we extend ViePEP by adding additional functionalities and components. Based on the
cost-based optimization model we implement a heuristic and run several evaluations
which are compared against a baseline. Details are presented in Chapter 5. Contribution
II was originally presented in [99].

Contribution III:
A cost-based optimization model for complex elastic processes.

We continue with the approach from Contribution III, i.e., the mutli-objective optimization
model aimed at complex elastic processes. Complex elastic processes differ to sequential
business processes as several additional factors need to be considered. For example, the
decision of which branch a process flow chooses or the amount of loop repetitions will have
an impact on the scheduling strategy. Hence, we provide a multi-objective optimization
model which considers different SLAs simultaneously. Solving this problem is defined as
the Service Instance Placement Problem (SIPP). In order to evaluate the applicability of
this optimization model, we extend ViePEP and run comprehensive experiments. Details
are presented in Chapter 6. Contribution III was originally presented in [43].

Contribution IV:
A cost-based optimization model for complex business elastic in a hybrid cloud focusing

on data transfer cost.

After having a multi-objective optimization model proposed in Contribution III, we
consider now business process enactment in a hybrid cloud environment. By combining a
public cloud and a private cloud, even more resources are available for executing business
processes. However, it is common that cloud providers charge users for in-bound and
out-bound traffic, i.e., uploading data to and downloading data from the cloud. We
consider this aspect in an extension of the SIPP model and provide a data-aware and cost-
based optimization model for complex elastic processes in hybrid clouds. Comprehensive
experiments have been performed in order to verify the efficiency of the extension. Details
of this optimization model are presented in Chapter 7. Contribution IV was originally
presented in [42].
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1.4 Organization of this Thesis
The remainder of this thesis is structured as follows:

• Chapter 2 provides background information and introduces the basics which are
used throughout this thesis. Specifically, background information about BPM is
introduced in Section 2.1. Further, we give a short introduction on cloud computing
in Section 2.2 and the concept of elastic processes in Section 2.3. In addition, we
introduce the original ViePEP 1.0 which is used as a base of this thesis and which
was originally presented in [97].

• In Chapter 3 we present related work from the field of resource allocation for
single service execution (Section 3.1), resource allocation for scientific workflows
(Section 3.2) and the most related field: resource allocation for business processes
(Section 3.3).

• In Chapter 4 we present a basic process scheduling and resource allocation approach
for cloud-based executions of elastic processes. Within this chapters, we extend
ViePEP, re-introduce its architecture and present a process scheduling and resource
allocation algorithm.

• Afterwards, Chapter 5 extends this approach and presents a cost-based optimization
model for sequential elastic processes. We realize this optimization model as an
heuristic and evaluate it against a state of the art baseline.

• In Chapter 6 we address resource optimization and scheduling of complex elastic
processes. For that, we extend ViePEP and map the complex search space for
process scheduling and resource optimization as a multi-objective optimization
problem.

• Chapter 7 extends the multi-objective optimization problem in order to support a
multi-cloud environment. For that, we address the challenges of data-aware process
scheduling.

• Finally, we conclude this thesis in Chapter 8 and discuss the presented contributions.
Last but not least, we offer an outlook on our ongoing and future research.
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CHAPTER 2
Background

In this chapter, we introduce background knowledge needed to understand this thesis,
i.e., the needed basic concepts that are used in this thesis. First, we introduce the basics
of BPM. Second, we illustrate the fundamental properties and functionalities of cloud
computing. Afterwards, we present ViePEP as it was firstly introduced in [97]. The
prototype ViePEP served as the basis for this thesis and each contribution (as presented
in Section 1.3) has been implemented as an extension.

2.1 Business Process Management
A basic use of Web services is composing them into value-added structures. This approach
is referred as service compositions (or sometimes orchestration) and is the underlying
technology of business processes [49]. The multidisciplinary approach, covering the
organizational, management and technical aspects of service compositions is referred
BPM [49, 70]. BPM “includes methods, techniques, and tools to support the design
enactment, management and analysis of operational business processes” [110]. Processes
are generally defined as sequences of tasks performed within (or across) companies or
organizations [119]. In this context, BPM refers to a collection of tools and methods for
achieving an understanding of, managing, and improving an enterprises’ process portfolio
[126].

Within such a portfolio, processes are commonly classified into two categories:

1. value-adding core processes, which are considered to contain corporate expertise
and produce products or services that are delivered to customers [26],

2. and non-value-adding supplementary processes, which facilitate the ongoing opera-
tion of the core processes.

For example, while processes concerning design and production are usually seen as core
processes, human-provided processes are seen as supplementary processes.
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In contrast to business process engineering (which is a greenfield methodology),
BPM considers generally planning, controlling, and monitoring of intra- and/or inter-
organizational processes. Further, this is done with regards to existing operational
sequences and structures in a consistent, continuous, and iterative way of process im-
provement [8].

Figure 2.1 presents a general BPM life-cycle which usually consists of four main
phases: Design & Analysis, Configuration, Enactment, and Evaluation [118]. Notably,
within this thesis only the Enactment phase is of further interest.

A system which provides the technical means to support the realization of BPM is
referred as a BPMS. In general, such a BPMS allows to store process definitions (i.e.,
process models), manages the process instances and monitors the enactments. This
can be achieved through logging the process executions. Process models hereby specify
process orchestrations and activities along them with execution constraints and relations
between them. A process model can be seen as a formal description of a business process
assigning single atomic work units (or tasks) to agents (or services) for execution. Such a
work unit (or task) refers to a work which needs to be performed, either manually or
automatically by system. Following the principle of Service Oriented Computing (SOC),
applications are used to fulfill the automated tasks. These are commonly implemented
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as (software) services [88, 110].
The automation of such a sequence of tasks within a process by a system is often

referred as a workflow [74]. Before executing a process, its process model needs to be
instantiated which is commonly called a process instance. Further, the system executing
and controlling these processes is called BPMS. Process requesters and service providers
may define QoS constraints in form of SLAs. This can be done either for the full process
model, for a specific process instance, or just for single tasks within a process instance. A
SLA consists out of one to many Service Level Objectives (SLOs) which address execution
deadlines (i.e., a specific point of time or a maximum amount of time for the process or
task execution), cost or other QoS metrics [55, 78].

It is a common approach to have a large number of concurrent process instances,
which is referred to a process landscape. Such a process landscape may span several
different organizations or companies [15]. In order to allow such a collaboration, the
employed BPMSs executing the process orchestrations need to communicate with each
other by sending and receiving messages over a pre-defined channel [118].

Due to the nature of such a process landscape, the BPMS needs to deal with
different arrival scenarios at any time. Further, the management efforts of scheduling and
enactment get more complicated with the degree of process model complexity, these may
vary from simple sequential processes (Chapter 4 and Chapter 5) to complex process
model (Chapter 6 and Chapter 7).

2.2 Cloud Computing

Cloud computing is a relatively new paradigm for delivering computational resources
in a an on-demand fashion to customers similar to other utilities like water, electricity
or gas [5, 6, 14, 16, 18, 35, 90, 111]. Examples of such resources are networks, servers,
storage, software (applications) and other services. In addition, with the market entrance
of major players like Amazon or Google, this new computing paradigm is already pretty
advanced [77] and the worldwide public cloud services market is worth 131 Billion US
dollars, with an estimated compound annual growth rate of about 17% from 2011 to
2017 [38].

Compared to traditional data centers, where resources are provided in a static way
(see Figure 1.1), in cloud computing the foundational characteristics are: on-demand
self-service, i.e., consumers can lease computing resources (server time, network storage,
etc.) from cloud providers without human interaction and prior commitments. These
resources are available over the internet and can be accessed through heterogeneous client
platforms (broad network access). A main functionality is the so-called resource pooling
which allows to serve multiple consumers simultaneously by assigning virtual resources
dynamically according to their demand. Further, these resources can be elastically
provisioned and released, either automatically or manually. Hence, rapid elasticity is a
key feature to the consumer [79].

The above mentioned properties enable the realization of elastic processes which can
dynamically adjust to the demand of resources which are needed to fulfill a service or
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business task. This utility driven nature is based on the Service Oriented Architecture
(SOA) principle, hence, offered service can be consumed in a service-oriented way and
without major user interaction [18]. These services are offered by cloud providers who
are “responsible for making a service available to interested parties”. Interested parties
are referred as cloud consumers, i.e., “a person or organization that maintains a business
relationship with, and uses service from, cloud providers” [14].

In recent years, a well known architecture of the cloud computing technology stack
has emerged. This technology stack involves three core layers: Infrastructure as a Service
(IaaS),Platform as a Service (PaaS) and Software as a Service (SaaS) [79, 122] (as shown
in Figure 2.2). However, there are no limits set to add additional layers, e.g., the newly
upcoming principle of Linux Container (LxC) technologies, such as Docker Containers,
gain more and more attentions [46].

At the bottom of the stack, one can find Hardware as a Service (HaaS). It provides
the means of leasing real hardware. However, this layer is seldom provided to cloud
consumers and rather known from the traditional way of server hosting, i.e., physical
machines. Mostly referred to as computational resources, the IaaS layer is often further
sub divided into additional services, e.g., communication or storage. Further, the IaaS
layer provides the means of dynamic provisioning of computational resources such as
Virtual Machines (VMs), storage discs, network devices, etc. Operating directly on the
IaaS level provides a higher degree of flexibility to cloud consumers but also requires
to to manage the leased resources on their own. Hence, this requires them to have the
necessary expertise in server management. Well known examples for IaaS providers are
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Amazon’s Elastic Compute Cloud (EC2)1, Microsoft Azure Compute2, Google’s Cloud
Platform3, VMWare vCloud4 and DigitalOcean5. Virtualization technologies allow to run
several VMs on a single physical machine. Each VM is isolated in terms of its applications
and resources. Beside of VMs, several IaaS provider offer additional services at the same
level, e.g., services for storing and retrieving data, i.e., Data as a Service (DaaS) (e.g.,
Amazon’s Simple Storage Service (S3)6).

On top of the IaaS layer is the PaaS layer. It is meant to reduce the administrative
overhead of managing the virtualized infrastructure and provides different products to
consumers. Commonly these products offer pre-configured software environments to the
user providing the means to simplify deploying, managing and scaling applications, while
provisioning of physical hardware, power, data center are managed by the cloud provider
[65]. However, when using PaaS products, consumers sacrifice some flexibility compared
to operating directly on the IaaS layer by relying on the provider managed infrastructure.
A variety of different PaaS products are offered by cloud providers. The most common
ones assist developers by offering a set of pre-configured components which can easily be
composed and then deployed into separate containers to ease development setup. More
advanced are managed VM containers offering a full Operating System (OS) including
a software stack for a certain use. However, developers still have a certain freedom to
customize and modify this environment (e.g., Heroku7). Most general, PaaS products
are meant to increase software developers productivity and reduce software cost [65].
In addition, providers can leverage additional information about the deployed software
applications which would not be available on the IaaS level.

As Figure 2.2 depicts, the most upper layer is the SaaS layer providing cloud appli-
cations. While its offers are rather targeted at end users, IaaS and PaaS products are
more for application developers and system operators. Usually, SaaS are meant to meet
a certain business need in a specific domain aiming at human interaction, i.e., a web
interface or a native graphical user interface is provided. Well known examples for SaaS
products are Dropbox8, Office 3609, Spotify10, Netflix11, and others.

The cloud paradigm offers new possibilities for business process enactment as resources
can be provisioned dynamically in an on-demand fashion, i.e., leased only when really
needed and released when unneeded. However, new possibilities also bring new challenges:
most importantly, a BPMS for elastic processes, which needs to be able to lease and
release cloud-based computational resources. Afterwards, the required services need to
be deployed among the available resources in an efficient way. Second, the BPMS has to

1https://aws.amazon.com
2https://azure.microsoft.com
3https://cloud.google.com
4https://vcloud.vmware.com/
5https://www.digitalocean.com/
6https://aws.amazon.com/s3
7https://www.heroku.com/
8https://dropbox.com
9https://login.microsoftonline.com

10https://spotify.com
11https://netflix.com
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Figure 2.3: Three Dimensions of Elasticity

create a scheduling and resource allocation plan, i.e., a detailed plan telling at what point
of time what amount of resources are required including where a specific process instance
should be executed. Third, the BPMS needs to monitor the process executions in order
to be able to detect SLA violations in time and arrange corresponding countermeasures
[68].

2.3 Elastic Processes
With the upcoming of cloud computing [79], advanced resource allocation and virtual-
ization capabilities are now possible which have fostered a new trend towards elastic
computing [32, 67]. The term elasticity is well-understood in economics (e.g., price
elasticity [102]) as well as in other fields like physics or chemistry (e.g., material science
[7, 103]). In general terms, elasticity expresses the potential to change some variables
in response to the change of other variables. For example, in the computing domain,
an elastic system is a system which is able to dynamically adjust itself (or adjust key
properties) in response to external events, i.e., user requests. These elastic properties
can be generally divided into three categories and be seen as the the ability to change
the amount of used resources (resource elasticity), the system responsiveness in terms of
cost (cost elasticity) and the resulting QoS (quality elasticity)[32], see Figure 2.3.

• Resource Elasticity:
It is common today to understand elasticity purely from a resource-management
point of view[24, 32]. However, this is rather restrictive, as resources’ requirements
are not determined only by the application and services using them. Even more,
considering elasticity solely from the resource perspective may lead to limitations
in terms of scalability and quality. A general assumption is that the more resources
are added to an application, the higher the quality gets, however, this is only true
to a certain point as the resource-quality relation can hardly be presented as a
linear function. For example, an application for performing image optimization
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operations will need a certain amount of computational resources, but, if more
resources are added, it is not likely that the quality of the image may increase, but
the result will be available faster[32].

• Quality Elasticity:
Quality elasticity measures how responsive the quality is when the amount of
available resources changes[32]. This elasticity follows the simple assumption that
the achievable QoS increases the more resources get consumed. However, the
main issue here is that a service is needed which is able to measure the quality.
Further, this service needs to consider a cost function for computing the resource
requirements in order to achieve a certain level of QoS, such as execution speed.
In this case, the service’s result is deterministic, but the execution speed can be
scaled, based on the amount of available resources. An example for such a service
is MapReduce, which is a scalable programming framework that lets users process
data elastically [27]. MapReduce has a desired elasticity that allows to scale the
execution speed with the amount of available computational resources.

Execution time (or response time which includes the network latency) is not the
only quality a service may have. Other quality measurements account for the result
quality of a service’s computation process. For example, the Aqua approximate
query answering system which was developed by Bell Labs is able to make trade-offs
considering quality aspects in query processing [2]. Traditionally, query processing
aims at generating correct and exact answers, however, the Aqua approximate
query answering system is able to execute queries faster than traditional answering
systems by providing only approximate answers instead of a correct one which may
take an unacceptable long time. The trade-off between the QoS outcome and the
execution time (response time) needs to be considered when allocating resources.

• Cost Elasticity:
Cost elasticity refers to the responsiveness of cost to changes of resource provisions.
This means, service providers may apply cost elasticity when defining the pricing
model for offered resources. Within this elasticity resources (such as computational
services provided by VMs, data transmission, etc. are charged based on a pay-as-you-
go model [79]. By defining such a model, service providers (such as cloud providers)
need to consider different cost items: e.g., the initial investment, provisioning and
maintenance of the hardware and network infrastructure. Based on this information,
providers can create a dynamic pricing model which is based on the cost elasticity
concept. For example, in Amazon’s EC2 pricing model, customers are offered with
two different pricing models12: On-demand instances which are purely based on a
pay-per-use model. Customers do not have long-term commitments and are free
from planning. The applied cost need to be paid per hour. And spot instances, for
which a different prices needs to be paid which may fluctuate over time according
to the actual supply-demand status (notably, Amazon may also consider additional

12https://aws.amazon.com/en/ec2/pricing/
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factors for their spot prices, but these are not open for the public). In this pricing
mode, potential customers bid a maximum they are willing to pay for resources.
The resources are provided as long as the spot price is smaller or equally to the
bidding prices or until the resource is explicitly released (e.g., the VM instance gets
terminated).

Using this pricing schema, Amazon can offer higher prices during peak times and
lower prices during off-peak time in order to shape customers behaviors. This may
lead to a balanced resource usage during the day, as more flexible customers would
tend to consume more resources when the prices are cheaper (off-peak times) and
avoid to lease resources during peak times.

2.3.1 Downside of Elastic Processes

If not properly designed, elasticity may result in unwanted system behavior or unexpected
cost[59]. Allowing an elastic system to change its state elastically can cause slight
modifications which in the worst case may become uncontrollable or irreversible. An
elastic system mainly relies on efficient monitoring techniques and has to decide whether
the available information is valid and in what way it can be useful. For example, if
invalid information is provided, e.g., the system monitor returns wrong information,
wrong transformation happened, etc. the elastic system may acquire resources in an
uncontrolled manner, i.e., leasing too many resources which will eventually lead to
uncontrolled high cost.

Even more, it may happen that the elastic system “decides” that a better placement
of services needs to be found, and constantly moves services between the leased resources.
This could prevent a needed scale down, i.e., releasing unneeded resources, which again,
will lead to unwanted spending. In contrast to that, if the system fails to scale up, i.e.,
additional resources are not leased on time, the needed level of QoS can not be achieved
which may result in SLA violations [50].

However, as mentioned in [32], elastic processes also consider process dynamics
from the field of human computing. Human computing can be seen as human-centric
technologies and services (e.g.,social compute units) [31, 87]. Although human computing
is still in its early states, promising approaches have already been proposed in different
fields such as context sensing machine analysis of human affective and social behavior
and smart environments [23, 86, 113]. However, scaling human resources is a challenge
on its own as QoS for human-provided services needs to consider different aspects. For
example, a possible way to consider quality for resource allocation of human services
would be by considering the people’s heterogeneous skills and interests.

Considering these different attributes can lead to better results that meet a predefined
level of quality [94]. In addition to that, a single human resource, e.g., a single person can
only be scaled to a certain extent. For example, a system administrator gets automatically
notification in case of unknown system errors, or errors which can not be easily recovered
automatically. The system administrator will only be able to solve a single problem a
time. Even more, if new notifications are raised before he was able to finish a former
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task, he will very likely be stressed, annoyed or unwilling to take up new tasks. Hence,
the scalability of human resources needs to be handled differently compared to scaling of
computational resources.

2.3.2 Upside of Elastic Processes

If properly designed, a system which considers all three elastic dimensions equally (i.e.,
resource, quality and cost elasticity) while realizing elastic processes has several benefits
over a system which considers only one elasticity a time, e.g., most of the time, only
resource elasticity is considered. However, such a system needs to define cost and quality
trade-offs if it is aimed at realizing elastic processes.

The system needs to deal with these trade-offs and find an optimal solution. Nonethe-
less, in some cases there is no optimal solution. Hence, the most fitting solution would
be the one which satisfies all given SLAs, e.g., deadline constraints or an upper limit for
cost a user is willing to pay. The resulting advantages are that the system is able to
handle different resource requirements depending on the current demand, e.g., through
leasing more resources during peak times and releasing them during off-peak times, the
system is able to provide a certain level of cost-efficiency. In addition, such a system is
able to provide a different level of QoS for different users/customers, e.g., depending on
their needs and given SLAs.

However, in order to do so, reliable and effective provisioning of elastic applications
requires precise engineering approaches and tools. An elastic reasoning mechanism is
needed which is able to cover the multidimensional dynamics of elastic processes[32].
This means, this elastic reasoning mechanism needs to decide how to utilize the leasable
resources in an optimal way. For example, such an algorithm can take the dynamic
resource and cost information from a cloud provider and the desired quality of a service
in order to reason on a possible action. Examples for such algorithm can come from
the field of reinforcement learning, which describes a wider field of machine learning
and artificial intelligence. It tackles a problem faced by an agent through trial-and-error
interactions with a dynamic environment [54]. The system keeps on trying different
action until “better” state has been reached. Alternatives can be decision trees [89], or
complex algorithm which make use of optimization approaches while taking into account
multiple objectives and variables in order to reason on an optimal solution [76].

In the scope of this thesis, resource and quality elasticity are the major driven elastic
properties. However, dynamic changes in cost are achieved as positive side effects. We
show that considering these two elastic dimensions equally during resource planning and
scheduling. Hence, this will eventually lead to a better overall system status. This means,
cost can be saved while the same (or even better) level of QoS can be provided.

2.3.3 Example Scenario

In the following paragraphs, we provide a basic example scenario to motivate this thesis
and to illustrate how elastic processes can be useful in the real-world. We consider a
scenario from the financial industry, since in banks IT cost account for 15%-20% of
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the overall administrative expenses [64]. Hence, cost-efficient process enactment is an
important goal in this domain. Notably, the presented example scenario is illustrative
only and should neither be seen as complete nor exclusively for the applied banking
domain. The work presented in this chapter can be easily used in any domain which
features an extensive process landscape and needs to be able to adjust efficiently to an
ever-changing number of process requests, e.g., the manufacturing industry [96] or Smart
Grids [91].

Figure 2.4 shows a graphical representation of our example scenario: We consider
an international bank featuring several branches which are worldwide distributed from
US East Coast over Europe to Asia. As each of the branches provides similar products
to their customers, the bank maintains a private cloud spanning all data centers of the
distributed branches. This cloud provides all business processes which are used within
the bank’s products and services.

Every branch of the bank has access to the business processes in the cloud. Notably,
the bank’s branches have a large number of different business processes at their disposal.
These may range from long-running data analytic processes to short-running trading
processes. Especially in the latter kind of processes, time constraints are critical as even
a short delay can lead to revenue loss or penalty payments. In order to ensure time
constraints, a process is therefore equipped with a SLA which defines its deadline, i.e.,
the point of time at which the process enactment has to be finished.

Assuming the discussed bank simultaneously serves several hundreds or even thousands
of customers, a very large number of business processes with different priorities may be
requested at every point of time. This leads to high fluctuations of needed resources
during peak and off-peak times. Also, the bank’s process landscape is ever-changing – new
orders and therefore process requests may arrive, while running process instances finish
or have to be repeated. Thus, the usage of principles of elastic processes is an obvious
approach [32]. Not surprisingly, elasticity and scalability have been named as primary
reasons for the usage of cloud-based computational resources in the financial industry
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[41]. For this, approaches to cost-efficient process scheduling and resource allocation – as
discussed in this thesis – are needed.

2.4 ViePEP 1.0 – The Vienna Platform for Elastic
Processes

In this section we present ViePEP which was first introduced in [97] and serves as the
base for this thesis. ViePEP was created as BPMS testbed to foster research on elastic
processes [32].

We take up the basic concepts of ViePEP in this thesis and gradually extend it
resulting in a completely new framework. Although the concepts remained the same, the
underlying architecture has been completely rewritten for this thesis. Hence, in later
chapters we reintroduce and present the newly created ViePEP 1.1 and later on the final
version: ViePEP 2.0 (see Section 6.4.1). However, before doing so, we introduce the
original ViePEP 1.0 – the Vienna Platform for Elastic Processes.

As Figure 2.6 depicts, ViePEP consists out of five top-level entities acting as a
unified framework. In order to motivate ViePEP’s components, we apply self-adaptation
techniques and concepts from the field of Autonomic Computing [57]. These techniques
also include self-healing, i.e., the ability of a system to detect and recover from potential
problems and continue to function smoothly, self-configuration, i.e., the ability of a
system to configure and reconfigure itself under varying and unpredictable conditions,
and self-optimization, i.e., the ability to detect suboptimal behavior and optimize itself
to improve its execution [57].

The functionalities and components needed to provide self-optimization of a Cloud-
based process landscape, are motivated according to the well-known MAPE-K cycle
shown in Figure 2.5. This is done, since a system enacting business processes is commonly
under permanent change, i.e., due to permanently arriving process requests and changing
cloud resource utilization, a continuous alignment to the new system status is necessary.
Using the MAPE-K cycle, the process landscape is continuously monitored and optimized
based on knowledge about the current system status. In the following, we will briefly
discuss the four phases of this cycle:
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Figure 2.5: MAPE-K Cycle (adopted from [57])

• Monitor :
In order to adapt a system, it is first of all necessary to monitor the system status.
In the scenario at hand, this includes the monitoring of the status of single VMs in
terms of CPU, RAM, and network utilization, and the non-functional behavior of
services in terms of response time and availability.

• Analyze:
To achieve Elastic Process execution, it is necessary to analyze the monitored data
and reason on the general knowledge about the system. In short, this analysis is
done in order to find out if there is currently under- and over-provisioning regarding
the leased cloud-based computational resources (VMs) and to detect SLA violations
in order to carry out corresponding countermeasures (e.g., provide further VMs or
re-invoke a service instance).

• Plan:
While the analysis of the monitored data and further knowledge about the system
aims at the current system status, the planning also takes into account the future
resource needs derived from the knowledge about future process steps, their SLAs,
and the estimated resource requirements and runtimes. For this, a process scheduling
and resource allocation plan needs to be generated

• Execute:
As soon as the plan is set up, each service is executed corresponding to this plan.
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Figure 2.6: ViePEP 1.0 – Architecture

• Knowledge Base:
While not really a part of the cycle, the Knowledge Base stores information about
the system configuration. In our case, this is the knowledge about which service
instances are running on which VMs, how many VMs are currently part of the
system, and of course the knowledge about requested process and service instances

In order to provide self-adaptation, ViePEP supports all four phases of the cycle. To
do so, ViePEP consists out of two major top level and two three helper components:

First, the Client models service-based business processes, i.e., a composition of several
services steps which have to be invoked. In addition to that, the Client can provide
optional deadlines, i.e., a particular point of time on which the process’s execution has
to be finished. Clients may request many processes consecutively or even simultaneously
and ViePEP is able to serve several clients in parallel.

Second, the BPMS VM provides the core functionality of ViePEP in terms of a
BPMS and cloud resource control solution. The subcomponents of the ViePEP BPMS
are placed in a individual VM to avoid that it becomes a bottleneck. Through vertical
scaling, it is possible to provide ViePEP with additional resources if the business process
and cloud landscape becomes increasingly complex. The BPMS VM consists out of:

• The Workflow Manager is responsible for accepting client-issued business process
requests during runtime. It stores these processes in a queue, where they are
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stored until being scheduled for execution. Therefore, another responsibility of the
Workflow Manager is the actual execution of these processes. Further, it measures
the execution time for services, which is a prerequisite to detect and counteract
against deviations from expected QoS behavior.

• The Load Balancer is able to balance the service invocations on the available
resources in order to have an equal load on each VM.

• The Reasoner provides the core functionality of ViePEP. This component is
responsible for creating a detailed scheduling plan according to the given deadlines.
In addition, it arranges leasing and releasing the required amount of cloud-based
computational resources.

A Backend VM hosts a particular service. Usually, several Backend VMs exist at the
same time, each hosting a particular service (several instances of the same service may
be hosted at different Backend VMs). Backend VMs are managed by the BPMS VM.
The Backend VM hosts an Application Server on which the single services are deployed.
In order to monitor the services regarding several QoS attributes, such as response time,
the VM’s CPU and RAM load, a Monitoring component is installed. Another important
component is the Action Engine which is able to deploy and undeploy the services if
requested by the Reasoner from the BPMS VM.

The Shared Memory and Service Repository are helper components. The Shared
Memory is used to provide the possibility of sharing data and information between the
BPMS VM and the different Backend VMs. In this version we chose MozartSpaces for
our needs, as it provides the means of a peer-to-peer-based, distributed shared memory.
We use this shared memory as a storage for the monitoring data. Further, we make use
of the notification feature of MozartSpaces for sending action commands from the BPMS
VM to the single Backend VMs.

The Service Repository hosts the service descriptions as well as their implementations
as portable Web Application ARchive (WAR)-files which can be easily deployed on the
Application Server. The Service Repository is queried by the Action Engine in order to
find a particular service and deploy it on its Application Server.

ViePEP 1.0 was implemented as a standalone application using Java 1.6. It includes
RESTful interfaces which are provided for the public, e.g., using these interfaces, Clients
can request business processes for executions. As communication technology between
Backend VMs and the BPMS VM we employ a shared memory, i.e., MozartSpaces13 [60].
Beside of simple storage functionality, we use this shared memory for issuing notifications
from the BPMS VM (i.e., from the Reasoner) to the Backend VM (i.e., towards the
Action Engine). The single services are deployed using WAR-files which can be deployed
on any arbitrary application server, e.g., in our case Apache Tomcat 614 is deployed. Last
but not least, for monitoring the services and the underlying architecture in terms of
CPU load and RAM usage we use PIS-Probe15.

13http://www.mozartspaces.org/2.3-SNAPSHOT/
14https://tomcat.apache.org/download-60.cgi
15https://github.com/psi-probe/psi-probe
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CHAPTER 3
Related Work

In the following chapter the most important related work in the field of this thesis is
presented. This includes work from the field of resource allocation and service provisioning
for single service invocations (Section 3.1), for Scientific Workflows (Section 3.2) and for
business processes (Section 3.3).

3.1 Resource Allocation for Single Service Invocations

The main focus of this thesis is on business processes and their executions using cloud-
based computational resources. However, resource allocation and automated service
provisioning has a longer history for single service executions than for business processes.
Hence, many methods and algorithms to allocate resources and schedule single service
requests in the cloud have been proposed in recent years[17, 63]. In general these
approaches focus on several different aspects. Cost optimization in terms of SLA penalties
and resources utilization is one of the major topics. For example, Lampe et al. make
use of a Knapsack-based heuristic in order to solve an assignment problem in which
services on a SaaS level are assigned to particular VMs on the IaaS level [63]. The
authors define this problem as Software Service Distribution Problem (SSDP). Similar
to that, Lim et al. address the topic of automatic resource controlling by creating an
horizontal platform for web applications, i.e., this platform is able to grow to serve a
higher amount of requests by acquiring additional VMs. The underlying optimization
model is based on linear regression and is supposed to be able to detect the right moment
when a new VM should be leased or another one can be released. The authors continued
their work in [72] in order to support a scalable storage controller. Urgaonkar et al. in
[105] propose a dynamic provisioning technique for multi-tier web applications in the
cloud, By using a flexible queuing model, their approach is able to determine how many
resources are required for each tier including a predictive and reactive method which is
able to determine when to acquire these resources.
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Cao et al. propose an optimized algorithm for task scheduling based on ABC
(activity based costing) [21]. Li and Venugopal provide an automatic mechanism to scale
applications up or down on the IaaS level. In order to do so, they apply machine learning,
i.e., a reinforcement learning approach [71]. This algorithm earns points if moving a
service, starting or terminating a VM results in a better situation, e.g., better QoS such
as throughput, response time, etc.

In other work, QoS and SLA validation and enforcement are also taken into account:
In order to deliver such a solution where the needed QoS is considered in a cost-efficient
way, Buyya et al. proposes the federation of distributed and independent cloud resources
[17]. Further, Cardellini et al. modeled cloud resource management in terms of VM
allocations for single service invocations as a mixed integer linear optimization problem
and propose heuristics to solve it [22].

Wu et al. discuss dynamic resource allocation from a different perspective [120]. The
authors aim at profit maximization for SaaS providers while scheduling service requests
based on pre-defined SLAs between service provider and consumers. Beside of this, Litoui
et al. aim at optimizing at different layers in order to gain profit for different stakeholders
e.g., IaaS providers, PaaS providers, SaaS providers and end users [73]. Similar to that,
Lee et al. consider also a three-tier cloud structure while addressing the challenge of
service request scheduling in the cloud [66]. This structure consists of infrastructure
vendors, service providers and consumers. Similar to that, Truong et al. propose a novel
PaaS which aims at supporting dynamic life-cycle development and execution of elastic
systems. Within the PaaS, the authors consider cost, resource and quality elasticity each
associate with single components of the system [104].

The way how the profit can be maximized or how a better resource utilization can
be realized differs for many approaches, e.g., by making use of a just in-time resource
allocation mechanism, i.e., only reserve resources when they are actually needed [124].
Cost-efficient scheduling can also be reached through optimizing resource utilization.
This has been addressed by Emeakaroha et al. in [34]. The authors consider different
SLA parameters, such as the amount of CPU required, network bandwidth, memory and
storage within their scheduling approach for deploying applications in the cloud.

The important characteristics of cloud-based services are the assurance of non-
functional guarantees in the form of SLAs, such as guarantees of execution time and
prices. In order to do so, Kertesz et al. propose a self-manageable architecture for
SLA-based service virtualization. This provides a way to ease interoperable service
invocations in the cloud [58].

Nguyen Van et al. do not try to acquire additional resources but try to change
the settings of already existing ones. For that, the authors propose SLA-aware virtual
resource management for the cloud [84]. The authors continue their work and propose
an automatic virtual resource management approach for service hosting platforms[83].

Resource optimization for single services is an interesting research topic on its own.
However, the discussed approaches lack of a process perspective across the utilization
of resources. This means, the main focus was on single independent service scaling, i.e.,
there is no relation between two distinct services. A prominent approach is to scale
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reactive, i.e., as soon as a specific event appear, the system needs to be scaled, e.g., if the
CPU load exceeds a particular threshold or a service response time is above a specific
value over a timespan. Other approaches propose the usage of proactive scaling, i.e, the
amount of needed resources is predicted and resources are allocated in advance. The
presented scaling strategies give a good insight and parts are applicable for our work.

3.2 Resource Allocation for Scientific Workflows
Beside of optimization for single services, a number of different scheduling and optimiza-
tion approaches for scientific workflows have been proposed. However, it has to be noted
that a direct application of these approaches to business processes is not possible as there
are particular differences between scientific workflow and business processes [74]:

• First, business processes have a different goal than scientific workflows. While
scientific workflows are driven by (scientific) experiments and evaluations, business
processes are more business driven, i.e., business processes are meant to create a
certain product or service to customers. Because of this, QoS and further SLAs
have a much higher importance to business processes than scientific workflows.

• Second, another difference is that scheduling for scientific workflows usually only
considers single workflows, while for business processes scheduling has to take
care of a complex landscape of potentially hundreds or thousands of concurrent
processes.

• Third, while business processes are rather control flow oriented, scientific workflows
are more data driven. Consequently, scheduling for scientific workflows usually takes
into account data transfer aspects [85], while this is rarely the case for business
process scheduling approaches.

• Fourth, for scientific workflows, scheduling approaches apply always different process
models, i.e., instead of sharing services concurrently between workflows, they are
instantiated and carried out individually on a particular VM. As soon as the service
invocation has finished, the VM hosting the service will either be released or reused
for other services. This is a similar scenario as for single service invocation scaling.
Hence, we see overlapping approaches in both fields.

However, some scheduling approaches present interesting aspects which may be also
applicable for business process scheduling. For example, Hoffa et al. or Juve and Deelman
also utilize cloud resources for the execution of scientific workflows [47, 53]. cloud-based
computational resources are also used by Pandey et al. who propose the usage of
Particle Swarm Optimization for scheduling scientific workflows [85]. The authors aim
at minimizing total cost, which are combined cost of storage and data transfer cost.
However, the authors neglect considering QoS and further SLA aspects which are an
important factor in business process scheduling. Szabo and Kroeger apply evolutionary
algorithms in order to schedule data intensive scientific workflows on a fixed amount of
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VMs [101]. Again, the authors do not consider deadlines and consider only one workflow
at a time. The latter constraint also applies to work by Byun et al. [19]. The authors
present a scheduling and resource allocation approach which considers cost aspects and
deadlines defined by users. The same is also addressed by Abrishami et al. who explicitly
consider deadline constraints for IaaS providers [1].

Similar to the approaches used for scaling single service invocations, the presented
approaches for scientific workflow scheduling and resource optimization offer interesting
ideas and insights. However, the mentioned differences between scientific workflows and
business processes prevent a direct adaptation [74].

3.3 Resource Allocation for Business Processes

Although the presented related work of scheduling and resource allocation for single
service invocations (Section 3.1) or scientific workflows (Section 3.2) give an interesting
insight into this subject matter, they can not be directly applied to business process
scheduling. In fact, approaches which directly address (elastic) business processes are
still scare. However, a number of researchers have already presented corresponding work.

Xu et al. share the same basic assumptions as we made for the work at hand, i.e.,
that processes are interdependent and that services can be shared among them [121].
The authors consider optimization of scheduling in respect to cost and time. However,
QoS and further SLAs are not considered within their approach.

Business processes are also considered by Juhnke et al. in [52]. The authors provide
an extension to a standard Business Process Execution Language (bpel) workflow engine.
This is able to make use of cloud-based computational resources to execute business
processes. Since this workflow engine is based on bpel, processes are composed from
services, which mirrors the assumptions from our work. Through this extension, Juhnke
et al. made it possible to execute an arbitrary amount of processes in parallel while
optimizing scheduling and resource allocation. This is done in respect to cost and the
overall execution time. The authors created an optimization problem which considers,
apart from VM leasing cost, also data transfer cost. In order to solve this optimization
problem, a genetic algorithm is applied. However, as deadlines are not considered, this
approach can be compared to the above mentioned related work on scientific workflow
scheduling.

Similar to that, Duipmans et al. propose a transformation-based approach for business
process management in the cloud [30]. The authors assume that processes are composed
from single steps, hence, their approach allows companies to control their business
processes in a way that particular parts (steps) can either be executed on their own
premise or on additionally leased resources in the cloud. For that, the authors propose an
intermediate language and a transformation chain which allows to split business processes
according to data and activity distribution.

The same assumptions were made by Bessai et al. [9, 10]. The authors also assume
that processes are composed form single steps which are represented by software services.
Within their work, the authors present different methods to optimize resource utilization
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and process scheduling. The driving factor is cost and also time optimization or to find
a pareto-optimal solution covering both, cost and time. An important aspect within
their work is that process steps, and the corresponding software services can be shared
concurrently among different processes [12]. However, in contrast to our work, the
services will not share the same VM concurrently, i.e., the authors consider a one service
per VM approach. Similar to Juhnke et al. [52], deadlines are not regarded. Further,
both authors are do to consider different priorities for different processes, e.g., may it be
through postponing particular processes to the future timeslot or through pre-poning
processes to the current timeslot.

Wei and Blake and Wei et al. [114, 115] propose a similar approach: as in the other
work, processes are build from single software-based services and the main focus in
on optimizing resource allocation. However, although service instances may be shared
among different processes [115], the authors do not consider parallel service invocations
in different process instances, i.e., a particular service instance is only invoked by one
process instance at a time. In their later work [116], Wei et al, extend their previous
work and propose an adaptive and proactive resource management algorithm. The goal
of the algorithm is to keep the total amount of leased resources for each service neither
over- nor under-provisioned.

Contrary to that, in our work, we follow the classic service composition model, i.e.,
sharing and invoking service instances among different process models. Beside of this,
although the authors do not consider any SLAs or deadline constraints, a process owner
may define generic QoS constraints [117]. Since deadlines are not taken into account,
a priority-based scheduling is not given. Although the authors do not consider cost
explicitly, they provide mechanism aiming at saving cost. Similar to Bessai et al. in
[11], Wei et al. also do not implement a testbed to evaluate their algorithms, but rather
use simulation techniques in their evaluation runs. However, despite of the mentioned
differences between our work and the work by Wei et al., there are several commonalities
such as the allowance of different sized VMs and the attempt to predict a future resource
demand.

Amziani et al. discuss the modeling of single elastic processes using Petri nets and
simulate elasticity strategies, but do not take into account scheduling [3]. However, in his
later work, Amziani and Mohamed et. al., propose a generic model that allows adding
autonomic management facilities to any Cloud resource [81]. This model is designed
according the MAPE-K cycle as used in our earlier work in [97] and within this thesis
(see Section 4.2.1).

Janiesch et al. provide an extensive conceptual model for business processes in [51].
In order to evaluate their approach, the authors provide a corresponding testbed which
makes use of Amazon Web Services. Similar to our approaches, the authors take into
account SLAs, such as deadlines and aim at cost optimization. However, an automatic
scheduling and resources allocation mechanism was not provided. Further, in contrast to
our work, the authors do not use monitoring to gather data and compute the resource
demand for upcoming service invocations, but assume that a correlation is given between
the resource demand of different steps in a process.
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A complementary scenario to the approach which is presented in this work was also
applied by Gambi and Pautasso in [37]. The authors define design principles for executing
RESTful business processes using cloud-based computational resources. However, as the
authors propose a one-process-per-VM approach, i.e., a particular process instance is
deployed on one particular VM, sharing computational resources or service instances
among different process instances is not possible.

Only a few researchers, e.g., Cai et al. [20], Bessai et. al., [10, 12], Wei et. al.,
[114, 117] discuss business process scheduling in a way as we did. So far, most researcher
see solely resource elasticity as the major driving factor. For that, different approaches
have been proposed ranging from simple ad hoc-based scaling (Li et al. [71]) to pro-
active resource optimization (Wei and Bessai [116]). However, considering only resource
elasticity is rather restrictive as neglecting the other dimensions of elastic processes
will eventually lead to either unneeded high cost or a low level of QoS. Hence, in this
thesis we aim at realizing elastic business process enactment in the cloud, i.e., we aim at
considering all three dimensions equally (resource, quality and cost elasticity).
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CHAPTER 4
Scheduling and Resource

Allocation for Sequential Elastic
Processes

As mentioned in the introduction section, BPM is a matter of great importance in
many different industrial sectors, e.g., the financial industry as means to carry out trade
settlement or execution control [40], or in the energy domain as means to carry out
essential decision processes [91, 93]. One of the most important aspects of BPM is the
automatic execution of processes and a large number of different approaches for modeling
and executing such processes have been presented in the past [33, 82].

Efficient and effective resource allocation is a key issue in process executions [61], and
a corresponding BPMS has to be able to administrate, schedule and execute hundreds
of process instances simultaneously, which are each made up from several process steps.
Such a BPMS is also responsible to assign needed computational resources to the single
services representing the process steps [48]. Based on the functional diversity of these
services, the requirements in computational resources do vary. Many of these services
may be resource-intensive, especially if a large amount of data has to be processed in
a short time [91]. Furthermore, some processes need to be carried out immediately,
others may have to be done regularly, and others may have to be done until a specific
deadline. Naturally, the computational resources needed to execute processes are subject
to temporal variations – during peak times, the needed computational resources will be
much higher than during off-peak times [32]. On the one hand, a BPMS equipped with
a fixed amount of computational resources that could handle peak loads in a resource-
intensive process landscape would lead to very high cost based on the over-provisioning
of resources in off-peak times, since resources will not be utilized most of the time. On
the other hand, a BPMS might not be able to carry out processes at all or with an
unacceptable QoS, if there is a shortage (under-provisioning) of resources.
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We presented such a BPMS in Section 2.4: ViePEP 1.0 – A BPMS which has several
responsibilities: First, it has to create a scheduling plan for the requested processes,
i.e., a detailed plan which defines at what time a particular process instance and its
services need to be carried out in order to adhere to the given SLA. Second, it has to
create a resource allocation plan and lease or release cloud-based computational resources.
Third, ViePEP has to make sure that the scheduling plan is carried out and allocate
resources according to the need of the single services. Last but not least, it has to conduct
countermeasures in the case of service or resource failures.

ViePEP 1.0 is already partially able to execute business processes using cloud-based
computational resources, i.e., it is able to realize elastic processes [4, 32]. However, the
first version lacks a resource-optimization algorithm. Hence, we hereby extend ViePEP
1.0 by the means of a dynamic business process scheduling and resource allocation which
makes use of cloud-based computational resources in an efficient way.

The remainder of this chapter is organized as follows: First, in Section 4.1 we define
some prelimiaries including the overall scenario description. In Section 4.2 we reintroduce
ViePEP and extend it. For that, we present a slightly adapted version of the well-known
MAPE-K cycle [57]. Afterwards, we introduce the used scheduling (Section 4.3) and
reasoning algorithms (Section 4.4). In Section 4.5, we evaluate the algorithms. The
chapter closes with a summary in Section 4.6.

4.1 Preliminaries

We assume that a business process landscape is made up from a large number of business
processes, which can be carried out automatically. The part of a business process which
can be executed using machine-based computational resources is also known as a workflow
[74], however, within this thesis we use the term processes.

While we assume that processes are composed of software services, we do not expect
that companies are willing to outsource important services fully to external providers,
since these services will then be outside of the control domain of the process owner. In
contrast, we make use of private and public cloud-based computational resources to host
service instances, which are then invoked as process steps and leaves the control with the
process owner: If particular service instances or VMs fail, the process owner or the admin
of the business process landscape is able to deploy further service instances. Making use
of VMs to host particular services allows sharing resources among processes, as the same
service instance might be invoked within different processes at the same time. Notably,
it is important to distinguish between services (from a specific type), which are the basic
building blocks of processes, service instances, which are hosted by VMs, and service
invocations, which denote the unique execution of a service instance in order to serve a
particular process request, i.e., a process instance.

In our scenario, processes may be requested at any time by process owners (called
clients in the following) and may be carried out in regular intervals or nonrecurring, i.e.,
ad hoc. For that, clients can choose from a set of process models and request them by
instantiating one or more, i.e., resulting in a particular process instance.
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It is the duty of a software framework (in our case, ViePEP), which combines the
functionalities of a BPMS and a cloud-based computational resource management system,
to accept incoming process requests, schedule the process steps, and lease and release
computational resources based on the process scheduling plan. The clients are able
to define different QoS constraints as SLA on the level of process instances. Without
a doubt, the deadline is the most important SLO: Some business-uncritical process
instances may have very loose deadlines, while other process instances need to be carried
out immediately and finished as soon as possible. Usually, process instances will have a
defined maximum execution time or a defined deadline. The clients are able to define
complex processes which feature AND-block, XOR-block or Repeat loop constructs.
However, we assume that the next steps in a particular process instance are always
known. We assume that the business process landscape is volatile, i.e., ever-changing,
since process requests may arrive at anytime. Furthermore, changes may have to be
necessary since services or VMs are not delivering the expected QoS, or the next steps in
a process instance are not as planned.

For achieving an efficient scheduling and invocation of processes and corresponding
services, cloud-based computational resources in terms of VMs are used. The software
services are deployed on the VMs in order to be invoked. Each service is of a specific
service type and needs to be deployed on an arbitrary VM resulting in a service instance.
There might be more than one service instance of the same service type at the same time.
The same applies for VMs, i.e., there might be an unspecific amount of VMs of each
type, i.e., VM instances.

Overall, the total cost arising from leasing aforementioned cloud-based computational
resource are subject to be minimized. In addition, it has to be made sure that given QoS
constraints such as deadlines, until which corresponding process instances have to be
finished, are satisfied. The closer the deadline is for a certain process instance, the higher
is the importance to schedule and execute corresponding services accomplishing its steps.
If not carefully considered and scheduled, further additional cloud-based computational
resources will have to be leased and paid in order to execute process instances that cannot
be delayed any further. For avoiding such situations in which extra resources have to
be leased due to an inefficient scheduling strategy, the execution of process instances
along with the leasing and releasing of cloud-based computational resources has to be
optimized. This makes it necessary to facilitate self-adaptation and self-optimization
of the overall business process landscape through replanning of process scheduling and
resource allocation.

4.2 ViePEP 1.1

ViePEP 1.0 was firstly introduced in [97] and described in Section 2.4. It provides
mechanisms and architectural components that are beyond those of traditional BPMS
approaches [32], as it combines the functionality of a cloud resource management system
and a BPMS. The platform has to manage a potentially highly volatile business process
landscape, as process requests permanently arrive, leading to a changing demand of
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required resources. This makes it necessary to continuously align and optimize the system
landscape, which is made up

1. from the business process landscape and

2. the leased cloud-based computational resources.

ViePEP operates on the PaaS level [5], i.e., ViePEP is able to lease and release
cloud-based computational resources in terms of VMs from a cloud provider and deploy
services on them. For this, ViePEP is able to schedule process instances and single
process steps based on predefined rules, and allocate cloud-based resources to execute
them. ViePEP provides the capabilities to estimate the resource demand for carrying
out single services and is able to lease and release cloud-based computational resources
based on this information.

In order to support process scheduling and resource allocation on a more complex
level, we extend ViePEP 1.0 (Section 2.4) and present here a novel approach to reason
about the amount of needed resources. For that, we apply techniques from the field
of autonomic computing and self-adaptation for elastic process executions according to
a modified MAPE-K cycle [57]. Further, we split up the core component of ViePEP:
Reasoner into two subcomponents: (i) Reasoner and (ii) Scheduler.

4.2.1 Self-Adaption for Elastic Process Execution

Self-adaptation is a common concept from the field of autonomic computing and includes
self-healing, i.e., the ability of a system to detect and recover from potential problems and
continue to function smoothly, self-configuration, i.e., the ability of a system to configure
and reconfigure itself under varying and unpredictable conditions, and self-optimization,
i.e., the ability to detect suboptimal behavior and optimize itself to improve its execution
[57].

The BPMS, i.e., ViePEP 1.0 has been designed as a self-aware BPMS and is able to
setup and reconfigure itself if the system landscape has changed (self-configuration), to
detect and recover from an error in order to be fully functional again (self-healing), and
to optimize itself in order to improve its execution (self-optimization). This approach has
been motivated by techniques and methods from the field of autonomic computing and
more in particular, ViePEP 1.0 was designed according to the MAPE-K cycle. However,
in order to provide a more sophisticated scheduling and resource optimization approach as
presented in Section 4.3 and Section 4.4, we slightly adapt this MAPE-K cycle and split
up the Planning phase into a Resource Planning (Reasoning) and Scheduling Planning
(Scheduling) phase (Figure 4.1). This is done with the motivation that these two phases
directly influence each other. For the sake of completeness, the full MAPE-K cycle
consists out of:

• Monitor:
A system has to be aware of its current state in order to be able to adapt itself to
internal and external influences such as the changing demand of required resources.
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Figure 4.1: Adapted MAPE-K Cycle (adapted from [57])

To achieve this, ViePEP provides the means of monitoring the status of single
VMs in terms of CPU load and RAM usage. Further, non-functional behavior
of the deployed services, such as response time and availability, is monitored.
This functionality was already provided in ViePEP 1.0 and has only been slightly
improved.

• Analyze:
In order to create an appropriate scheduling plan, it is crucial to take into account
the monitored data and to reason the general knowledge about the system. This
analysis aims at detecting if the system is over- or under-provisioned in terms of
leased cloud-based computational resources. In addition to that, the analysis of
historical data aims at detecting potential deadline violations in time in order to
find appropriate countermeasures.

• Scheduling:
In order to make sure that process deadlines are met, it is necessary to create a
detailed execution plan of each single process step, i.e., at which point of time a
particular service has to be invoked. This scheduling plan is highly dependent on the
resource planning. Therefore ViePEP 1.1 will implement a mutual communication
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flow between those two steps as can be seen in the adapted MAPE-K cycle in
Figure 4.1 and in ViePEP’s 1.1 architecture in Figure 4.2.

• Reasoning:
While the previous phase aims at creating a detailed scheduling plan, this phase
is responsible for calculating the amount of required computational resources in
order to fulfill exactly this plan. For that, the service invocations are assigned to
the available resources arranged in timeslots according to their deadlines. If there
are not enough resources available, additional ones will be leased; if resources are
superfluous, resources will be released.

• Execute:
As soon as the schedule planning and resource planning has been done, each service
is invoked as planned and resources are leased or released according to this plan.

• Knowledge Base:
While not really a part of the cycle, the Knowledge Base stores information about
the system configuration. In our case, this is the knowledge about which service
instances are running on which VMs, how many VMs are currently part of the
system, and the knowledge about queued processes.

4.2.2 ViePEP 1.1 – Architecture

As ViePEP 1.0, ViePEP 1.1, the updated version consists out of five top level entities
(depicted in Figure 4.2):

Although not really part of the framework, the Client can request business processes
for execution. These are forwarded to the BPMS VM, which hosts the core functionalities
of ViePEP in terms of a BPMS and cloud resource control solution. While the components
Process Manager and Load Balancer remain the same, the main difference to the earlier
version of ViePEP is that the newly updated version contains a Scheduler and a Reasoner,
which are responsible for creating a detailed scheduling plan according to the process
instance deadlines, and lease or release the required cloud-based computational resources.
For a detailed descriptions how the Scheduler and Reasoner operate, please refer to
Section 4.3 and Section 4.4.

On the BPMS VM, the Reasoner is able to control a number of Backend VMs, each
hosting a particular service on an Application Server. The Action Engine is able to deploy
and undeploy services if requested by the Reasoner. The Reasoner can issue a request to
the cloud provider to either start a Backend VM and when its Action Engine is ready,
to deploy a new service instance, or (in case the Backend VM is already running) the
Action Engine is directly able to execute the corresponding request. ViePEP allows the
following actions:

• Start a new Backend VM, which includes deploying a new service instance on it.

• Duplicate a Backend VM including the deployed service instance.
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Figure 4.2: ViePEP 1.1 – Architecture

• Terminate a Backend VM, which marks the Backend VM as phasing out and will
prevent the Load Balancer from requesting further service invocations from this
Backend VM. Once all previously assured service invocations have been finished,
the VM is terminated.

• Exchange the hosted service instance on the Backend VM. This will also prevent
the Load Balancer from requesting any further invocations of this particular service
instance. Once all assured service invocations have been finished, the instantiated
service is replaced by another one.

• Move a service instance from one Backend VM to another one (with different
computational resources).

Last but not least, the Shared Memory and Service Repository provide data storage
capabilities for services and monitoring data.

ViePEP 1.1 was developed as a standalone application using Java 1.6. For the shared
memory we chose MozartSpaces [60], which provides the means of a peer-to-peer-based
distributed shared memory. It is used as a storage for the monitoring data. Further,
we make use of the notification feature of MozartSpaces to send action commands from
the BPMS VM to the Backend VMs. The services are portable WAR-files which can
be easily deployed on an arbitrary Application Server, in our case Apache Tomcat 61.

1https://tomcat.apache.org/download-60.cgi
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Further, the services are monitored using PSI-Probe2.
So far, the process scheduling and reasoning algorithms of ViePEP 1.0 only considered

deadline constraints, i.e., in form of priorities: the closer a process instance’s deadline is,
the higher is its priority. However, there has been no optimization of resource utilization
considering deadlines more in detail. Within the next two sections, we present a more
sophisticated scheduling and reasoning approach which enables resource-efficient process
scheduling.

4.3 Scheduling

4.3.1 Problem Statement

A scheduling algorithm for elastic processes is responsible for finding a process execution
plan which makes sure that all process instances are carried out under given constraints.
These constraints are defined SLAs. Based on this scheduling plan, the Reasoner is able
to allocate, lease, and release cloud-based computational resources.

Scheduling has to be done continuously for an unknown duration of time, across
a system landscape including the business process landscape as well as cloud-based
computational resources, so that:

• All SLAs defined for process instances are met.

• Resources are utilized in an efficient way, i.e., the cost for leasing VMs over the
reckoned timespan should be optimized.

• Scheduling and reasoning needs to be redone once the system landscape changes, as
new process instance requests arrive, or the predicted resource utilization of VMs
does not apply.

• In addition, scheduling and reasoning are done in regular intervals. This interval
can be set by a system administrator.

In order to find such a scheduling plan, we make use of the following constraints:

• Each Backend VM hosts exactly one service instance, i.e., it is not possible that
different service instances (from different types) are instantiated at the same
Backend VM.

• All VMs are from the same type, i.e., they offer the same capabilities in terms of
computational resources and cost.

2https://github.com/psi-probe/psi-probe
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4.3.2 Process Descriptions and Monitoring Data

ViePEP accepts new process instance requests at any time, and maintains a queue of
process instances which are ordered by their individual priorities, i.e., they are sorted by
the client-defined deadlines for the process instnace execution. In order to accept new
process instances and to create a scheduling plan for the queued process steps, a process
description language is needed. Formally, a process instance is defined as following:

Pi = {slap, s1, s2, ..., sn}

si = {slas, id}

slai = {slo1, slo2, ..., slon}, i ∈ {p, s}

Pi defines a process instance with ID i which consists out of 1 to n single sequential
service steps expressed by s1, ... ,sn. Each service step must provide a mandatory field
id which is the unique identifier of the service representing this step. A process instance
can have an optional SLA (slai) consisting out of several SLOs expressed by slo1, ... ,
slon on process instance (slap) or service level (slas). For now, we consider solely the
deadline as SLO, i.e., the scheduling takes into account that process instances have to be
finished before a particular point of time; deadlines for single steps are then derived from
this SLO if they are not explicitly defined. For this, we define

slap = deadlinep

slas = deadlines

In the following, we assume that SLA and deadlines defined by the process owner (client)
are valid and achievable. For example, regarding deadlines this means that the execution
duration of the single steps in a process instance does not exceed the set process execution
deadline and that the deadline is in the future.

ViePEP monitors service invocations continuously regarding execution duration and
needed cloud-based computational resources in terms of RAM and CPU. These values
are assigned to the corresponding services, thus monitoring data for a particular service
can be described as follows:

mID = {d, cpu, ram, |ID|}

mID defines one monitoring data entry for the service with the id ID, i.e., the monitoring
data for one particular service invocation of service si, i.e., a service with the ID ID. d
defines the service execution duration, cpu defines the CPU usage, ram defines the RAM
usage, and |ID| defines the number of concurrent invocations of service si at the time
of monitoring at the particular VM it is running on. For now, the CPU value is used
for the resource demand prediction (see Section 4.4) and the duration value is needed to
create a efficient scheduling plan.

Based on this data, we are able to derive the needed resources and duration of a
single service invocation, as presented in [45].
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4.3.3 Scheduling Algorithm

ViePEP maintains a queue of process instances, which are sorted by the client-defined
process instance execution deadlines. A client is able to specify an execution deadline,
i.e., the latest date and time when the process instance execution has to be finished.

If this is the case, we can calculate the overall process instance execution duration tp
as follows:

tp =
n∑
i=1

tsi + ε

As can be seen, tp is the sum of each single service invocation duration (tsi) plus a safety
margin ε. tsi has been calculated based on the monitoring data as described above. ε can
be set independently for each single process instance by the client. A large ε indicates a
low risk to not meet the execution deadline, as there is a certain time buffer if a service
invocation takes longer than estimated. Vice versa, if ε has been set to a small value or
even 0, there is a high risk that the execution deadline cannot be met as there is no time
buffer left.

Based on tp, the latest starting time startp can be calculated:

startp = deadlinep − tp

where deadlinep is the given SLA which defines the process instance’s execution deadline
and tp is the process instance execution duration calculated in the last step.

In order to compute at which point of time a particular process step has to be
executed, thus the given SLA is not violated, we have to compute the latest starting time
for each single process step si accordingly:

startsi = startsi+i − tsi

where startsi+i defines the latest starting time of the next step in the process instance,
and tsi defines the execution duration of step si. As can be seen, this is a recursive
function, as it is necessary to derive the latest starting time of the next step. However,
for the last step sn in a process instance, the execution deadline is identical with the
process execution deadline:

deadlinesn = deadlinep

Hence, the latest starting time for the last step in a process instance is:

startsn = deadlinep − tsn

In case deadlines have been set for single services, the starting time for step si is set by:

startsi = deadlinesi − tsi

After the starting time is calculated for each single process step in the queue, a full
scheduling plan for the process instance executions is available, i.e., ViePEP has now the
information at which point of time how many service invocations have to be performed.
This information is forwarded to the Reasoner (Section 4.4) which is responsible for
reasoning about the required demand of resources.
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Figure 4.3: Timeslot Scheduling

4.4 Reasoning

Algorithm 1 Method Reasoning()
1: procedure reasoning
2: for i = 1 to timeSlotsList.size() do
3: timeSlott0 = timeSlotsList.get(i);
4: timeSlott1 = timeSlotsList.get(i+ 1);
5: demandt0 = computeResourceDemand();
6: if demandt0.isFullyUtilized() then
7: continue();
8: end if
9: while demandt0.isNotFullyUtilized() do

10: moveInvocations(timeSlott0, timeSlott1);
11: demandt0 = computeResourceDemand();
12: end while
13: reasoning();
14: end for
15: end procedure

In the previous section, we described how deadlines of individual process steps and
the corresponding starting times are assigned in order to fulfill a given SLA. The result
of this step is a detailed plan of which process step should be executed at which point
of time. Based on this information, it is now possible for the Reasoner to derive the
resource demand. To compute the needed amount of computational resources, each
different service is considered separately, as only one service instance per Backend VM is
allowed to be instantiated.

Figure 4.3 represents a scheduling plan for a specific service instance. On the horizontal
axis, the time periods are shown, while the vertical axis show the number of planned
parallel service invocations at a specific timeslot ti. Figure 4.3a shows the initial state
as it would be provided by the Scheduler: In t0 there would be a total of 60 parallel
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invocations, in t1 90 and in t2 also 90. By using Ordinary Least Square (OLS) linear
regression, we can compute the total amount of required resources for one timeslot based
on historical monitoring data [112]. This process instance is based on the notion that a
dependent variable – corresponding to the resource utilization of a Backend VM for a
particular service instance – can be derived through the linear combination of a set of
independent variables, corresponding to the individual monitoring results for this service
instance. In the following, we will describe the outcome of the OLS-based regression
analysis based on the example from Figure 4.3.

In the example, the regression analysis has led to the outcome that a single Backend
VM is able to handle 80 invocations of a particular service instance in one single
timeslot. Please note that this analysis would be done for all service instances in parallel.
Furthermore, the degree of maximum utilization of a Backend VM can be set as a
parameter by the system admin. A high maximum utilization would lead to a higher
saturation of the computational resources of a VM, but would also yield a higher risk of
under-provisioning, as there is only a small resource buffer.

Taking the original scheduling plan into account, in the first timeslot t0, we have
60 parallel service invocations scheduled. The Reasoner would calculate the demand of
resources for these 60 invocations and would derive that it is possible to do even more
invocations in t0, as there are still resources available and not exploiting them would lead
to a waste of resources. Therefore, we present a reasoning algorithm which is able to
move the scheduled invocations from one timeslot to another in order to fully utilize the
acquired resources. The algorithm is presented in form of pseudocode in Algorithm 1.

The input for this algorithm is the list of queued process steps (services) which is
sorted by their execution deadline (timeSlotList). Each timeslot is exactly as long as
one service invocation lasts; however, as reasoning is done for each service separately,
different services in a process instance will have different timeslot lengths. From line
2–14, we iterate over these timeslots and consider each timeslot separately. Since the
Scheduler has assigned a number of process steps to each timeslot, we can compute the
amount of required resources for this timeslot (see line 5 in the Algorithm 1). This is
done by calling the method computeResourceDemand() which is based on OLS linear
regression.

In the next step, we calculate if the required resources are fully utilized (line 6). If
this is the case, we continue with the next timeslot (line 7), if not, service invocations
from the next timeslot are pre-poned to the current timeslot in order to try to fully
utilize the acquired resources (lines 9–12). Naturally, this leads to a lower number of
service invocations in the next timeslot. Hence, it is necessary to replan the scheduling.
Therefore, the reasoning() method is called recursively (see line 13).

For the example, Figure 4.3b presents the result of the first round of scheduling:
20 invocations were shifted from t1 to t0. In the next step, the second timeslot will
be considered. After the first round of replanning the scheduling, only 70 invocations
are scheduled for timeslot t1. Since the available resources are able to handle more
invocations in parallel, 10 further invocations are shifted from the t2 to t1. The result is
presented in Figure 4.3c. At this point, we want to state that the presented numbers
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in this example are only for illustration and do not echo the result of a real evaluation.
Evaluation results will be presented in the next section.

Based on the outcome of the replanning of the original scheduling, the Reasoner is
now able to deduct the required resources and will correspondingly trigger the start
and termination of Backend VMs, duplicate a Backend VM, move a running service
to another Backend VM, or exchange the service hosted by a Backend VM by another
service.

4.5 Evaluation
In the following, we will first shortly describe the evaluation scenarios and secondly we
will present the results of the evaluation runs.

We used ViePEP 1.1 for our evaluation and implemented the scheduling and reasoning
algorithms (see Section 4.2). As test environment we used an OpenStack-based cloud.

4.5.1 Evaluation Scenario

For the evaluation, we chose a particular business process which has to be processed
20,000 times. This process model consists out of 5 individual steps realized by RESTful
services, i.e., a Dataload Service which loads data from a sensor, a Pre-Processing Service
which performs some simple computations with the loaded data, a Calculation Service
which processes the given data, a Reporting Service which generates a report out of
the results, and a Mailing Service which delivers a mail containing the report. Each
individual service needs a different amount of computational resources in terms of CPU
and RAM. The maximum utilization parameter for the Backend VMs is set to 80%, i.e.,
scheduling and resource allocation will only utilize max. 80% of the offered resources of
a Backend VM. The concrete value of 80% was chosen based to achieve a high resource
utilization on each VM, while maintaining necessary reserves in case of unexpected errors,
e.g., another VM needs longer to start or fails and needs to be restarted. In addition, a
the needed amount of CPU per invocation is not deterministic, hence, having spare 20%
will allow slight deviations.

4.5.2 Process Request Arrival Patterns

We make use of three distinct process request arrival patterns:

• Constant Arrival Pattern:
In this arrival pattern, the process requests arrive in a constant manner. An
automated client sends 200 requests simultaneously to the BPMS every 10 seconds,
i.e., y = 200.

• Linear Arrival Pattern:
In this arrival pattern, the process requests arrive in a linear rising function, i.e.,
y = k ∗ bx3 c+ d. The number of constantly rising parallel requests is increased by
10 every 10 seconds.
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• Pyramid Arrival Pattern:
In this arrival pattern, the process requests are sent to the server according to a
pyramid-like function. We start at 0 parallel requests and increase it to a randomly
chosen peak. As soon as this peak is reached we decrease the number again to 0
and repeat this procedure until the maximum number of process requests has been
covered (here: 20,000).

The different arrival patterns have been chosen in order to show how the algorithms
perform under different degrees of volatility. While the number of process requests is
quite predictable in the constant and linear arrival patterns, the pyramid-based arrival
pattern follows a more unpredictable arrival pattern. The arrival patterns are shown as
“Process Requests” in Figure 4.4.

4.5.3 Metrics

In order to get reliable numbers, we executed each arrival pattern three times and
evaluated the results against the following three quantitative metrics:

• Total Makespan in Minutes: This metric defines the total execution makespan of
all 20,000 process instances, i.e., this is the timespan from the first process instance
to the moment when the last process step has been processed.

• Max. Active Cores: The second metric is the amount of concurrently leased number
of cores, i.e., the maximum of leased (CPU) cores.

• Cost: This metric is a combination of the former two, i.e., it defines the cost
emerging from the acquired resources. The cost are defined in VM-Minutes, i.e.,
one VM-Minute is defined as one VM running for one minute. VM-Minutes can be
directly mapped to common pricing schemes, e.g., from Amazon EC2.

In the evaluation runs, we compare the “Scheduling + Reasoning” approach against
a baseline which makes use of an ad hoc approach (“Pure Scheduling”), i.e., applies
scheduling and resource allocation, but does not apply the reasoning. This means that in
the baseline scenario additional VMs are leased in an ad hoc approach, i.e., whenever
the threshold is exceeded additional VMs are acquired, or if the load falls short of a
lower threshold (20%), unneeded VMs are released. The lower threshold of 20% has been
chosen in order to tolerate the CPU load the OS will approximately need.

4.5.4 Results

The results of our evaluation in terms of the average number of all evaluation runs
can be found as numbers in Table 4.1-4.3 and as graphical presentation in Figure 4.4.
“Pure Scheduling” denotes the ad hoc approach without reasoning, while “Scheduling +
Reasoning” marks the application of the complete approach as presented in Section 4.3-4.4.

Table 4.1-4.3 presents the observed metrics as presented in Section 4.5.3 for all
three arrival patterns (constant, linear, and pyramid). The tables state the average
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Table 4.1: Evaluation Results – Constant Arrival

Constant Arrival
Pure Scheduling Scheduling Reasoner

Number of Process Requests 20,000
Interval between
two Request Bursts (in Seconds) 10

Number of Requests in one Burst y = 200
Total Makespan in Minutes
(Standard Deviation)

25.67
(σ=2.09)

23.93
(σ=0.42)

Max. Active Cores
(Standard Deviation)

21
(σ=*)

14
(σ=*)

Cost in VM-Minutes
(Standard Deviation)

302.5
(σ=13.60)

277.44
(σ=7.18)

*unfortunately this value was not available

Table 4.2: Evaluation Results – Linear Arrival

Linear Arrival
Pure Scheduling Scheduling Reasoner

Number of Process Requests 20,000
Interval between
two Request Bursts (in Seconds) 10

Number of Requests in one Burst y = 10 ∗ bx3 c+ 10
Total Makespan in Minutes
(Standard Deviation)

44.52
(σ= 3.01)

42.04
(σ= 6.91)

Max. Active Cores
(Standard Deviation)

24
(σ=*)

24
(σ=*)

Cost in VM-Minutes
(Standard Deviation)

545.05
(σ=20.62)

537.72
(σ=14.03)

*unfortunately this value was not available

of the evaluation runs including the standard deviation (σ). Figure 4.4 completes the
presentation of the average evaluation results by depicting the arrival patterns (“Process
Requests”) over time and the number of running VMs until all process instances have been
served. Again, evaluation results for “Pure Scheduling” and “Scheduling + Reasoning”
are shown. In some cases it may happen that the “Process Requests” are ending before
the whole scenario is finished. This can be reduced to the fact that each process instance
has a deadline in the future and some process instances are still waiting in the queue
which have to be processed.
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Table 4.3: Evaluation Results – Pyramid Arrival

Pyramid Arrival
Pure Scheduling Scheduling Reasoner

Number of Process Requests 20,000
Interval between
two Request Bursts (in Seconds) 20

Number of Requests in one Burst Based on a Random Number
Total Makespan in Minutes
(Standard Deviation)

40.22
(σ=0.67)

38.5
(σ=1.2)

Max. Active Cores
(Standard Deviation)

21
(σ=*)

20
(σ=*)

Cost in VM-Minutes
(Standard Deviation)

555.16
(σ=25.98)

545.56
(σ=17.30)

*unfortunately this value was not available

As presented in Table 4.1-4.3, for all three observed arrival patterns, the application
of “Scheduling + Reasoning” leads to lower cost if compared with “Pure Scheduling”:
The constant arrival pattern is seen as the best case scenario. Both the “Pure Scheduling”
and the combined approach lead to relatively low cost, i.e., 302.5 VM-Minutes vs. 277.44
VM-Minutes. The combined approach leads to cost savings of 8.28%. This shows that
in this arrival pattern, our approach was able to reduce the total makespan in minutes
(from 25.67 to 23.93 minutes, i.e., 6.78%) while allocating less resources. In contrast to
that, the savings from the combined approach in the linear arrival pattern (∼ 1.34%) and
the pyramid arrival pattern (∼ 1.73%) are comparably small. This can be traced back
to the fact that in these cases, there is not as much information available about future
resource demands, as the number of process instances changes permanently and therefore
it is more difficult to pre-pone service invocations to earlier timeslots. Furthermore, these
arrival patterns require more changes in the numbers of Backend VMs per service, which
also leads to higher cost.

Regarding the time savings, the constant arrival pattern features the largest saving
for the “Scheduling + Reasoning” approach (∼ 6.78%) , while the linear arrival pattern
(∼ 5.57%) and the pyramid arrival pattern (∼ 4.28%) feature smaller numbers.

Taking the cost and time savings into account, it can be deduced that the combined
approach speeds up the total processing time, but the Reasoner is not able to fill up the
Backend VMs to the same degree for all arrival patterns. Once again, this can be traced
back that in the linear arrival and pyramid arrival pattern, information about process
instance arrives in a more unpredictable manner and the number of Backend VMs per
service is more volatile. As we can achieve the smallest cost savings in the pyramid
arrival pattern, it can be deduced that this arrival pattern is the worst case scenario for
our approach. Hence, it will be interesting to investigate such a arrival pattern in more
detail in our future work.

Last but not least, it should not be forgotten that the good results for the “Pure
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Figure 4.4: Evaluation Results

Scheduling” approach are due to the fact that our approach already takes into account
the single deadlines for individual process steps. In general, both the “Pure Scheduling”
and the “Scheduling + Reasoning” approaches led to a quite efficient resource allocation
of cloud-based computational resources. Therefore, through the application of these
algorithms, ViePEP is able to decrease the risk of unwanted spendings produced by
over-provisioning. Furthermore, the system also decreases the risk of process instance
execution errors by preventing under-provisioning of resources.
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4.6 Conclusion
In this chapter, we presented scheduling and reasoning algorithms for sequential elastic
processes, i.e., for the execution of business processes using cloud-based computational
resources. The decision at what point of time a particular process instance should be
enacted is based on client-defined non-functional requirements such as execution deadlines.
Depending on a computed scheduling plan, the ViePEP Reasoner is able to deduce the
resource demand and allocate resources accordingly. Furthermore, the Reasoner changes
the scheduling plan based on the current resource situation. As we have shown in the
evaluation, our “Pure Scheduling” approach already leads to good results in terms of
cost and total execution time; the “Scheduling + Reasoning” approach leads to further
cost and time savings.

Research on elastic process landscapes in the cloud, including dynamically leasing
and releasing of computational resources, is just at the beginning and we are sure that
more and more approaches addressing this topic will follow in the next years. In our
own work, we take into account more complex process patterns – in this chapter, we
focused on sequential processes only, however, loops, branches and further patterns are
more realistic and closer to real-world scenarios. This will be considered in Chapter 6
and Chapter 7.

In the next chapter, i.e., Chapter 5 we will extend our work from this chapter and
provide an algorithm aiming at saving cost, i.e., we present a cost-based optimization
model for sequential elastic processes.
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CHAPTER 5
Cost-based Optimization for
Sequential Elastic Processes

We showed in the former chapter (Chapter 4) how cloud-based computational resources
can be used for elastic process enactments in an efficient way. Within this chapter
we extend that approach and aim at optimizing the used resources by providing an
optimization model and according heuristic.

5.1 Overview
In Section 2.4 we presented ViePEP 1.0, which combines the functionalities of a BPMS
with that of a cloud resource management system. We extended this BPMS and presented
ViePEP 1.1 in the former chapter: A BPMS which is able to schedule complete processes
as well as the involved single tasks, lease and release cloud-based computational resources
in terms of VMs while taking into account SLAs defined by the process owners.

Within this chapter, we extend our former approach by addressing the problem
of online cloud-based computational resource allocation for elastic processes using an
optimization model and a heuristic. In our scenario, it is necessary to schedule service
invocations and lease and release cloud-based computational resources in order to carry
out single process steps under given SLAs. To encounter the complexity of this scenario,
it is necessary to compute the resource demands of service invocations, develop a cost
model, compute the cost, and perform a cost/performance analysis. This has to be done
continuously, as new process requests arrive, software services representing single process
steps do not behave as predicted, or a process instance is changed by the process owner.
The goal is to provide cost-optimized process scheduling that takes into account the given
SLAs and leases and releases cloud-based computational resources in order to optimize
cost. Hence, the main contributions in this chapter are as follows:
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• We formulate a model for scheduling and resource allocation for Elastic Processes.

• We design a heuristic based on the proposed model.

• We integrate this work into ViePEP 1.1.

The remainder of this chapter is organized as follows: In Section 5.2, we introduce some
preliminaries. Afterwards, we present a scheduling and resource allocation solution for
sequential elastic processes. For this, we define an integer linear optimization problem and
a corresponding heuristic (Section 5.3.2 and Section 5.3.3). We evaluate the scheduling and
resource allocation algorithms using ViePEP 1.1–based testbed experiments (Section 5.4).
Last but not least we close this chapter with a summary in Section 5.5.

5.2 Preliminaries

As in the former chapter (see Section 4.1), we assume a business process landscape to
be made up from a large number of business processes which need to be carried out
automatically using cloud-based computational resources. For that, a BPMS is deployed
(here ViePEP 1.1 see Section 4.2).

In this process landscape, clients can choose from a set of process models and request
processes for execution, i.e., clients can instantiate the process models resulting in a
particular process instances. Each process instance consists out of a set of process steps
which are realized by invoking a corresponding (software) service. A service is of a specific
service type and in order to be invokable, it needs to be deployed on a particular VM
instance resulting in a service instance. Such processes may be requested at any time
and may be carried out in regular intervals or ad hoc and nonrecurring. Users can define
SLAs for process instances. Within such a SLA, different SLOs may be defined. In this
chapter we consider solely the process deadline.

ViePEP, the deployed BPMS is employed to accept these process requests, schedule
their executions, compute the resource demand and lease or release cloud-based com-
putational resources according to the created scheduling plan. Summarizing, the core
functionalities of ViePEP can be described as following:

• Provisioning of an interface to the cloud, allowing leasing and releasing cloud-based
computational resources (VMs) on-demand

• Execution of process steps by instantiating services on VMs and invoking the service
instances of process instances

• Dynamic scheduling of incoming requests for processes based on their QoS require-
ments, i.e., timeliness in terms of maximum execution time or a deadline

• Monitoring the deployed VMs in terms of resource utilization and monitor the QoS
of service invocations
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So far, the information which services need to be invoked at what point of time
was generated by the Scheduler and the Reasoner using a deadline-based scheduling
approach as presented in Section 4.3 and Section 4.4. These two components aimed
at resource-efficiency only, i.e., the objective was to use less resource with the major
limitation that only single-core VMs were leased.

However, cloud providers allow leasing different types of VMs, each comprising
a different level of resource supply, e.g., a different amount of CPU cores or RAM.
For example AWS provides several different VM types1. As the Reasoner has now
more possibilities, the decision whether to scale up, down and in what dimension, gets
more complicated. Hence, we extend the functionality of the Reasoner and provide an
optimization model aiming at cost optimization.

Notably, the basic functionality of the Reasoner remains the same: it interacts with
the Load Balancer in order to estimate which Backend VM provides how many free
resources for particular service instances. In addition, the Reasoner is aware of the queued
process requests and a Scheduler is employed to create a detailed scheduling plan. The
functionality of this subcomponent is defined through the optimization approach and
heuristics presented in Section 5.3.

Within the next chapter, we present the revised approach for scheduling processes
and their single service invocations as an optimization model.

5.3 Solution Approach
We formulate the problem of scheduling process instances and their individual services,
respectively, as an optimization problem. The general approach proposed in this chapter
for achieving an optimized scheduling and resource allocation is presented in Section 5.3.1.
A formal specification of the corresponding optimization problem is provided in Sec-
tion 5.3.2. Finally, in Section 5.3.3, we describe a heuristic solution method for efficiently
solving the optimization problem.

5.3.1 General Approach

For achieving the necessary process scheduling and resource allocation, the deadlines
indicating the time when the corresponding process instances have to be finished are
considered. In addition, in order to minimize the total cost of VMs leased for executing
process requests and corresponding services, respectively, the leased VMs should be uti-
lized as much as possible, i.e., leased but unused resource capacities should be minimized.
Thus, in order to reduce the necessity of leasing additional VMs, we try to invoke services
that cannot afford further delays first on already leased VMs before leasing additional
VMs if the remaining resource capacities of already leased VMs are sufficient. Only if the
resource requirements of processes cannot be covered by already leased VMs, additional
VMs will be leased. For instance, if the deadlines for certain process instances allow
delaying their service invocations to another period, it can be beneficial to release leased

1http://aws.amazon.com/ec2/instance-types/

47

http://aws.amazon.com/ec2/instance-types/


resources and delay such service invocations. However, it has to be considered that those
service invocations have to be scheduled for one of the subsequent optimization periods
to ensure that corresponding deadlines are not violated.

In addition, since VMs are leased only for a certain time period and the execution of
already scheduled invocations will be finished at a future point in time, the scheduling
strategy to be developed cannot be static, i.e., the optimization approach for scheduling
service invocations should not be applied only once. It rather has to be applied multiple
times at different optimization points in time. In this respect, it has to be noted that
potentially further requested process instances may have to be served, which additionally
have to be considered when carrying out an optimization step.

Thus, an efficient scheduling strategy has to review allocated service instances and
scheduled service invocations periodically and carry out further optimization steps for
considering dynamically changing requirements and keeping the amount of leased but
unused resource capacities low. Furthermore, the resource demand and average runtime
for single service instances needs to be known in advance – for this, an approach based
on OLS linear regression will be applied.

5.3.2 Optimization Problem

In this section, we model the scheduling and allocation of processes and services as an
optimization problem. Since cloud-based computational resources are only leased for
a limited time period, it has to be decided whether those resources or even additional
resources have to be leased for another period, or whether leased resources can be released
again. In this respect, we aim at utilizing leased cloud-based computational resources,
i.e., VMs, to their full capacities. Further, additional resources will only be leased if
capacities of already leased VMs are not sufficient to cover and carry out further service
invocations that cannot be delayed.

For considering the different (optimization) time periods, the index t will be used.
Depending on these periods, the parameter τt refers to the actual point in time, re-
spectively, indicated by a time period t. For scheduling different processes, multiple
process templates are considered. The set of process templates is labeled with P , where
p ∈ P = {1, ..., p#} refers to a certain process template. The set of process instances
that have to be considered during a certain period t corresponding to a certain process
template p is indicated by Ip, where ip ∈ Ip = {1, ..., i#p } refers to a specific process
instance.

The total number of process instances that have to be considered in period t is
indicated by i#p . Please note that considering a certain process instance ip in period t
does not necessarily result in invoking corresponding service instances in this period. It
rather makes sure that it is considered for the optimization step conducted in period
t, which may lead to the decision that this instance is further delayed – until another
optimization step is carried out in a subsequent period. The remaining execution time
for executing a certain prorcess instance ip, which might involve invoking multiple service
instances for accomplishing the different steps of a certain process instance, is indicated
by the parameter eip . Thus, by specifying the parameter eip as the remaining execution
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time of a certain process instance, we account for the fact that certain steps of this
instance might have already been accomplished by having invoked corresponding service
instances in previous periods.

It has to be noted that executing process instances refers to invoking software-based
services representing a process step jip . The next step of a process instance is labeled
with j∗ip . For example, if a process instance consists of five steps, its remaining execution
time eip is determined by the sum of the execution times ejip

of the steps Jip which are
required for accomplishing the different steps of the process instance, i.e., eip =

∑
jip∈Jip

ejip

The set Jip thereby represents the set of process steps (including the services) that
have to be invoked for accomplishing all steps of process instance ip. Allocating and
executing this instance refers to invoking the next service j∗ip that accomplishes the next
step, i.e., the first step in this example. Thus, four steps of this process instance still
remain unaccomplished. After having the underlying service instance of j∗ip invoked, the
remaining execution time eip for this process instance is reduced by the execution time e∗jip

of the invoked service. Thus, eip can be determined by adding up the services’ execution
times for the remaining four steps of this process instance. For a more detailed description
of how the execution time is calculated, refer to Section 4.3. The corresponding process
instance needs to be executed again, i.e., a service instance accomplishing the second
step has to be invoked. For accomplishing this second step, the corresponding service
becomes the next service j∗ip .

The deadline at which the execution of a process instance has to be finished is
indicated by the parameter dip . Assuming a continuous flow of time, dip refers to an
actual point in time as, for instance, “27.09.2013, 13:37:00”. For executing a certain
process instance ip, i.e., for invoking the service instance of the next step j∗ip , of a process
instance ip, a certain amount of computational resources from a VM are required. The
resource requirement for the corresponding next services is indicated by rip .

Regarding the leasing of cloud-based computational resources, we assume different
types v of VMs. The set of VM types is indicated by the parameter V , where v ∈ V =
{1, ..., v#} refers to VM type v. The corresponding resource supply of a VM (in terms
of CPU, RAM, bandwidth) of type v is indicated by the parameter sv. For counting
and indexing leased VM instances of type v, the variable kv is used. Although in theory
unlimited, we assume the number of leasable VM instances of type v in a time period t
to be restricted by k#

v for modeling reasons, i.e., in order to make the idea of indefinite
resources, provided by the cloud, tangible. Thus, we assume a maximum number k#

v

of leasable VMs. The set of leasable VM instances of type v is indicated by Kv, where
kv ∈ Kv = {1, ..., k#

v }. The cost for leasing one VM instance of type v is indicated by cv.
For finally deciding at period t which service to instantiate and invoke, binary decision

variables x(ip,kv ,t) ∈ {0, 1} are used. A value x(ip,kv ,t) = 1 indicates that the next service
for step j∗ip of process instance ip should be allocated and invoked in period t at VM kv,
whereas a value x(ip,kv ,t) = 0 indicates that the invocation of the corresponding service
should be delayed, i.e., no service of process instance ip should be invoked in period t.
For indicating, whether a certain VM instance kv of type v should be leased in period t,
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another decision variable y(kv ,t) ∈ {0, 1} is used. Similar to x(ip,kv ,t), a value y(kv ,t) = 1
indicates that instance kv of VM type v is leased. The total number of VMs of type v to
lease in period t is labeled with γ(v,t).

Using these parameters and variables, we formulate the optimization problem in
(5.1) for deciding which process instances ip and corresponding services for the step jip ,
respectively, should be allocated and invoked in period t.

min
∑
v∈V

cv · γ(v,t) +
∑
v∈V

∑
kv∈Kv

y(kv ,t) · f(kv) (5.1)

τ(t+1) + eip − e∗jip
· x(ip,kv ,t) ≤ dip∀p ∈ P, ip ∈ Ip (5.2)

τ(t+1) ≤ τt + e∗jip
· x(ip,kv ,t) + (1− x(ip,kv ,t)) ·M ∀p ∈ P, ip ∈ Ip (5.3)

τ(t+1) ≥ τt + ε (5.4)

∑
p∈P

∑
ip∈Ip

rip · x(ip,kv ,t) ≤ f(kv) ∀v ∈ V, kv ∈ Kv (5.5)

∑
kv∈Kv

y(kv ,t) ≤ γ(v,t)∀v ∈ V (5.6)

y(kv ,t) · s(kv) −
∑
p∈P

∑
ip∈Ip

ri · x(ip,kv ,t) ≤ f(kv)∀v ∈ V, kv ∈ Kv (5.7)

x(ip,kv ,t) = 1 ∀p ∈ P, ip ∈ Ip, v ∈ V, kv ∈ Kv | if ip runs (5.8)

The constraints in (5.2) make sure that the deadlines dip for process instances ip will
not be violated. For this, the sum of the remaining execution time eip and the next
optimization point in time τ(t+1) has to be lower or equal to the deadline. By scheduling
a service invocation, the corresponding remaining execution time eip is reduced, because
the execution time for the next service ej∗

ip
will be subtracted in this case.

The constraints in (5.3) and (5.4) determine the next optimization point τ(t+1). In
order to avoid optimization deadlocks, which would result from not advancing the next
optimization time τ(t+1), τ(t+1) is restricted in (5.4) to be greater or equal to τt plus a
small value ε > 0. In order to replan the scheduling and the execution of process instances
as soon as a service invocation has been finished, τ(t+1) should be lower or equal to τ(t+1)
plus the minimum execution time of the services invoked in period t. Using an additional
parameter M ≥ max(ejip

), the last term in (5.3) thereby makes sure that services that
are not invoked in this period do not restrict τ(t+1), to be lower or equal to τt. However,
a replanning will anyhow be triggered if events such as the request of further process
instances or the accomplishment of a certain invoked service occur.
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The constraints in (5.5) make sure that the resource capacities required by the next
services for process instance ip assigned to instance kv of VM type v are lower or equal
to the capacities these VM instances can offer. If service instances are assigned to a
certain VM instance kv of type v, the corresponding decision variable y(kv ,t) will assume
a value of 1. The sum of all decision variables y(kv ,t) determines the total number γ(v,t)
of instances for VMs of type v, as indicated in (5.6). In (5.7), the amount of unused
capacities for VM instance kv, which is indicated by the variable f(kv), is determined. In
order to account for running services invoked in previous periods, corresponding decision
variables x(ip,kv ,t) are set to 1, which is indicated in (5.8).

The objective function, which is specified in (5.1), aims at minimizing the total cost
for leasing VMs. In addition, by adding the amount of unused capacities f(kv) of leased
VMs to the total cost, the objective function also aims at minimizing unused capacities
of leased VM instances.

5.3.3 Heuristic Approach

For efficiently solving the optimization problem presented in the last subsection, we
develop a heuristic solution method. This heuristic basically examines which process
instances ip and services representing the step jip , respectively, have to be scheduled and
invoked in the current optimization period t in order to avoid violating corresponding
deadlines dip .

For this, the heuristic initially determines the point in time τ(t+1), when the next
optimization step has to be carried out – at the latest. Corresponding to this (latest)
subsequent optimization time, a virtual time buffer is calculated for each process instance,
which will be referred to as slack, indicating the time the corresponding process instance
ip may be delayed at maximum, before a violation of the corresponding deadline dw takes
place. Those process instances, for which the slack is lower than 0, i.e., those process
instances, for which a further delay would result in violating a process deadline, are
considered as critical. Thus, at first, we try to invoke the critical services instances on
such VM instances that are already leased and running. Afterwards, we lease new VM
instances such that all remaining critical service instances are allocated and invoked in
the current period. Finally, in order to minimize unused resources of leased VM instances,
we invoke service instances on the leased VM instances corresponding to their slack.

This heuristic solution method is provided in Algorithm 2 using pseudocode. Corre-
sponding methods used in Algorithm 2 are indicated in Algorithm 3, Algorithm 4 and
Algorithm 5. In lines 1-13 of Algorithm 2 the required parameters and variables are
initialized. For instance, the deadlines dip for process instances ip of process template
p are initialized in line 2. In this respect, it has to be noted that the corresponding
parameter d[p,i] represents an array containing all deadlines dip of process instances ip
that are considered at optimization period t. Analogously, e[p,i] represents an array for
the remaining execution times of process instances ip, which is initialized in line 3. The
resource supply sv for a VM of type v is initialized in line 4, whereas the number of
instances kv of leased VMs of type v is initialized in line 5. Note that VM instances
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Algorithm 2 Heuristic Solution Approach
1: procedure main(String[] args)
2: d[p,i]; . //Deadline for instance i of process p
3: e[p,i]; . //Remaining execution time for instance i of process p
4: s[v]; . //Resource supply for VM of type v
5: k[v]; . //Number of already leased VMs of type v
6: leasedVM[v,k]; . //kth VM instance of type v
7: unusedRes[v,k]; . //Unused resources for kth VM of type v
8: sl[p,i] ← new Double[p#,i#]; . //Array for slack
9: rcrit ← 0; . //Aggregated resource demand for critical instances

10: vmTypeList; . //List of available VM types, sorted by size ascending
11: sortList ← new List(); . //Sorted List corresponding to slack
12: critList ← new List(); . //List containing critical instances
13: τ(t+1) ← d[1,1]; . //Initialize next optimization point in time
14: . //Compute τ(t+1)
15: for p = 1 to p# do
16: for i = 1 to i# do
17: if d[p,i]-e[p,i]-τ(t+1) then
18: τ(t+1)=d[p,i]-e[p,i]; . //Get minimum τ(t+1)
19: end if
20: if τ(t+1) ≤ τt then
21: τ(t+1)=τt+ε; . //Avoid deadlocks
22: end if
23: end for
24: end for
25: . //Compute slack sl[p,i]
26: for p = 1 to p# do
27: for i = 1 to i# do
28: sl[p,i]=d[p,i]-e[p,i]-τ(t+1); . //Get slack
29: if s[p,i] < 0 then
30: critList.add(getInst(p,i))
31: rcrit=rcrit+getInst(p,i).resNextService()
32: else
33: sortList.insert(getInst(p,i),sl[p,i]);
34: end if
35: end for
36: end for . //Invoke critical instances on leased but unused resources
37: usedRes=placeOnUnusedRes(critList)
38: rcrit= rcrit-usedRes
39: . //lease new VMs until rcrit is satisfied
40: leaseNewVMs(rcrit)
41: . //Place further non-critical instances on unused resources
42: placeOnUnusedRes(sortList)
43: end procedure
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Algorithm 3 Method PlaceOnUsedRes(List)
1: procedure placeOnUsedRes(List)
2: . //Variable Initialization
3: usedRes ← 0;
4: removeList ← new List();
5: for iter=1 to list.size() do
6: inst = list.get(iter);
7: r = inst.resNextService();
8: placed = false;
9: for v=1 to v# do

10: if !placed then
11: for k=k[v]; k≥1; k=k-1 do
12: if (r≤unusedRes[v,k]) then
13: placeInst(inst,leasedVM[v,k]);
14: placed = true;
15: unusedRes[v,k]=unused[v,k]-r;
16: usedRes = unused[v,k]-r;
17: removeList.add(inst);
18: break;
19: end if
20: end for
21: end if
22: end for
23: end for
24: list.remove(removeList);
25: return usedRes;
26: end procedure

potentially have been leased in previous periods. Thus, the number of instances kv is not
necessarily 0 when carrying out an optimization step.

Correspondingly, leased VMs as well as unused resources of already leased VMs, which
are indicated by the arrays leasedVM[v,k] and unusedRes[v,k], have to be considered (cf.
lines 6-7). For computing the slack of all process instances and aggregating the resource
demands of the critical instances, the array sl[p,i] and the variable rcrit is used (cf. lines
8-9). Since in this heuristic, different sizes of VMs are considered, i.e., they differ in the
amount of available resources, a list of the available VM types is stored in vmTypeList
in line 10. This list is sorted in ascending order by the VMs’ sizes, i.e., the smallest VM
comes first. In lines 11-12, empty lists are created for storing the critical instances as
well as the non-critical instances, which are sorted in the list sortList corresponding to
their slack. Finally, the point in time τ(t+1), where the next optimization step has to be
carried out at latest, is initialized with an arbitrary deadline, as, e.g., d(11).

Having initialized required parameters and variables, τ(t+1) is determined in lines
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Algorithm 4 Method PlaceInst(List,VM)
1: procedure placeInst(List, VM)
2: . //Variable Initialization
3: v = VM.getType();
4: removeList = new List();
5: unusedRes = supply[v];
6: for iter=1 to list.size() do
7: inst = list.get(iter);
8: r = inst.resNextService();
9: if unused≥r then

10: placeInst(inst,leasedVM[v,k]);
11: unusedRes=unusedRes-r;
12: removeList.add(inst);
13: end if
14: end for
15: list.remove(removeList);
16: return supply[v]-unusedRes;
17: end procedure

15-24 by computing the minimum difference between deadlines dip and corresponding
remaining execution times eip for all process instances. For this point in time, the
difference between remaining execution time and deadline, i.e., the slack, will be 0 for at
least one process instance. In order to avoid optimization deadlocks that will result if
the subsequent optimization time τ(t+1) is equal to the current time τ(t+1), a small value
ε > 0 is added (cf. lines 20-21).

In lines 26-36, the slack for each process instance is computed (cf. line 28) and the
corresponding process instances are either added to the list of critical instances (cf. line
30) or inserted into a sorted list of (non-critical) instances (cf. line 33) corresponding to
their slack. In addition, the resource requirements for the next services of the critical
process instances are aggregated (cf. line 31). The corresponding critical service instances
need to be allocated and invoked in the current period – either on already leased and
running VM instances or on further VM instances that have to be additionally leased
in this period. Invoking critical service instances on already leased VM instances is
accounted for in line 37 by calling the method placeOnUnusedRes, which is provided in
Algorithm 3. Within Algorithm 3, the method placeInst is called, which is provided in
Algorithm 4.

In line 38 (of Algorithm 2), the resource requirements of the successfully invoked
critical process instances are subtracted from the aggregated resource demand of the
remaining critical service instances. In line 40, additionally required resources are acquired.
For this, the method leaseNewVMs is called. Its pseudocode is presented in Algorithm 5.

The types of the new VMs are chosen according to the following procedure: In general
we successively try to acquire VMs with rather high resource supply aiming at reducing
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Algorithm 5 Method LeaseNewVMs(Res)
1: procedure leaseNewVMs(Res)
2: . //Variable Initialization
3: vm; . //Temp variable for new VM
4: while rcrit >0 do
5: for iter=1 to vmTypeList.size() do
6: v ← vmTypeList.get(iter);
7: if supply[v]≥rcrit OR iter == vmTypeList.size() then
8: . //start a new VM of type v
9: vm = leaseVM(v);

10: k[v] = k[v]+1;
11: leasedVM[v,k[v]-1] = vm;
12: unusedRes[vm,k[v]-1] = supply[v];
13: usedRes = placeInst(critList,vm, k[v]-1);
14: rcrit = rcrit-usedRes;
15: break;
16: end if
17: end for
18: end while
19: end procedure

unused resource capacities due to having a large number of rather small-sized VMs. In
addition, the cost of VMs in our scenario is proportional (see Section 5.2), i.e., larger VMs
will provide a proportionately lower basic load that is not available to service instances.
Therefore, as long as more resources are required, i.e., rcrit > 0 (cf. line 4 in Algorithm 5),
a new VM having the least amount of provided resources, but still bigger or equal to
the required resource demand rcrit (cf. line 7), will be leased. If no VM type fulfills this
requirement, the biggest available VM type will be leased (cf. line 9, i.e., if the end of
vmTypeList is reached). Subsequent to that, a new VM having this type will be leased (cf.
line 9). If a new VM is leased, the resource demand rcrit will be reduced by the amount
of actually used resources, i.e., after having placed critical instances on this VM (cf. line
13-14). Before this, we update in lines 9-12 the number of leased VM instances of type v,
i.e., kv, store the corresponding VM instance, and set the value of its unused resource
supply to the (maximum) supply of a VM of type v. Using the method placeInst, which
is provided in Algorithm 5, we allocate critical service instances on the newly leased
VM such that no further critical service instances can be placed on it due to its limited
resource capacity. Subsequently, a “break” statement will stop the for loop and the
procedure will be repeated until enough resources are available.

Corresponding to the presented algorithm for leasing additional resources ( Algo-
rithm 5), it is possible that resources are still available on the leased VMs, i.e., they are not
fully utilized. Therefore, we invoke further scheduled service instances on (already) leased
VM instances in order to reduce the amount of unused VM resources. This is realized
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in line 42 of Algorithm 2 by calling the method placeOnUnusedRes (cf. Algorithm 3)
another time.

Based on the results of the algorithms, the Reasoner is able to lease/release resources
based on the calculated resource demand. In addition, the Process Manager gets the
information at which point in time to invoke which service instance as part of which
process instance.

5.4 Evaluation

In the following we present our general evaluation approach (Section 5.4.1), i.e., the
evaluation scenario including the evaluation criteria. The experiment’s results are
discussed in Section 5.4.2. As in the former chapter, we use ViePEP 1.1 (Section 4.2)
for our evaluation. Notably, although the evaluation scenarios are similar to the former
evaluation, we are not able to compare the results directly with each other due to some
signifficant differences, e.g., in the former evaluation only single-core VMs were used and
resource cost (VM leasing cost or VM-Minutes) are calculated differently.

5.4.1 General Evaluation Approach

While ViePEP and the presented reasoning approach are applicable in arbitrary process
landscapes and industries, we evaluate the heuristic using a real-world data analysis
process from the finance industry. Choosing this particular process does not restrict
the portability of our approach to other domains. Again, we apply a testbed-driven
evaluation approach, i.e., real cloud-based computational resources are deployed. For
the single services, we simulate differing workloads regarding CPU and RAM utilization
and service runtime as discussed below. However, real services are deployed and invoked
during process executions.

As in our former evaluations (Section 4.5), we decided to make use of one single
process model which will be processed 20,000 times. This sequential process consists out
of five individual service steps: The light-weight Dataloader Service simulates the loading
of data from an arbitrary source; afterwards, the more resource-intensive Pre-Processing
Service is invoked; next, the Calculation Service simulates data processing, which leads
to high CPU load; then, the Reporting Service generates a simple report – it generates a
load similar to the one of the Pre-Processing Service. Last, the Mailing Service sends the
report to different recipients – this is a lightweight service comparable to the Dataloader
Service. The user-defined maximum execution time for process instances has been set to
5 minutes (from the time of the request).

In order to test our optimization approach against a baseline, we have implemented a
basic ad hoc approach. This approach is only able to take into account currently incoming
process requests in an ad hoc way. While this includes the scheduling of process requests,
the baseline approach does not take into account future resource demands. Instead,
whenever a Backend VM is utilized more than 80%, it leases an additional Backend VM
for the according service. When the utilization is below 20%, the VM is released again.
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Notably, the baseline approach will only lease single-core VMs, as it is not able to take
into account future resource demands.

Process Request Arrival Patterns

Similar to our former evaluation in Section 4.5, we make use of two distinct process
request arrival patterns: In the constant arrival pattern, the process requests arrive in a
constant manner. This means, the same amount of processes arrives in a regular interval.
In our evaluation, the number of simultaneously executed processes is set to 200 and
is send to ViePEP every 20 seconds. In the linear arrival pattern, the processes are
executed following a linear rising function, i.e., y = k · x3 + 40 where y is the amount
of concurrent requests and 40 the start value. This value is increased by k = 40 in an
interval of every 60 seconds.
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(a) Constant Arrival – Results
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(b) Linear Arrival – Results

Figure 5.1: Evaluation Results

Metrics

In order to get reliable numbers, we executed each arrival pattern three times and
evaluated the results against three quantitative metrics. First, we measure the total
makespan in minutes which is needed to process all 20,000 process instances (Total
Makespan in Minutes). This is the timespan from the arrival of the first process request
until the last step of the last process was processed successfully. The second metric is
the amount of the concurrently leased number of cores, i.e., the sum of (CPU) cores of
the leased VMs (Max. Active Cores). The combination of the first two metrics, results
in Cost in Core-Minutes, i.e., these tell us the resulting cost of the overall evaluation.
The Core-Minutes are calculated following a similar pricing schema as Amazons EC2,
i.e., the VMs cost increase proportionally with the number of provided resources. Our
evaluation environment, i.e., the private cloud we are running ViePEP in, provides four
different VM types, a single-core VM, a dual-core VM, a triple-core and a quad-core VM.
In order to get the resulting cost we sum up the active cores over time and get the overall
Core-Minutes.

5.4.2 Results and Discussion

Table 5.1-5.2 and Figure 5.1a-5.1b present our evaluation results in terms of the average
numbers from the conducted evaluation runs. Table 5.1-5.2 present the observed metrics
as discussed in the last section for both arrival patterns. For each arrival pattern, the
numbers for evaluation runs are given for the baseline scenario as well as the deployed
optimization approach. The tables also state the standard deviation (σ) from the average
values. In general, the observed standard deviation is low, and therefore indicates a low
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Table 5.1: Evaluation Results – Constant Arrival

Constant Arrival
Pure

Scheduling
Reasoner +
Scheduler

Number of Process
Requests 20,000

Number of Requests in one
Burst y = 200

Total Makespan in Minutes
(Standard Deviation)

52
(σ=2.16)

39
(σ=0.81)

Max. Active Cores
(Standard Deviation)

11
(σ=0)

10
(σ=0)

Cost in Core-Minutes
(Standard Deviation)

443.67
(σ=7.72)

370.33
(σ=5.90)

Table 5.2: Evaluation Results – Linear Arrival

Linear Arrival
Pure

Scheduling
Reasoner +
Scheduler

Number of Process
Requests 20,000

Number of Requests in one
Burst y = 40 · bx3 c+ 40

Total Makespan in Minutes
(Standard Deviation)

28.67
(σ= 1.25)

22
(σ= 0.82)

Max. Active Cores
(Standard Deviation)

18
(σ= 0)

16.66
(σ= 0.47)

Cost in Core-Minutes
(Standard Deviation)

314.71
(σ=25.36)

243.59
(σ=6.70)

dispersion in the results of the different evaluation runs. Figure 5.1a and Figure 5.1b
complete the presentation of the average evaluation results by depicting the arrival
patterns (“Process Request Arrivals”) over time and the number of active cores until all
process requests have been served. Again, evaluation results with deployed optimization
and applying the baseline approach are shown.

The numbers in Table 5.1 and Table 5.2 indicate a substantial performance difference
between the baseline and the optimization approach. Most importantly, the cost in terms
of Core-Minutes is lower in both cases, leading to 16.53% cost savings for the constant
arrival patter and 22.60% for the linear arrival pattern. Hence, we can derive that the
optimization approach helps to achieve a significantly better utilization of VMs, thus
preventing additional cost arising from over-provisioning of cloud-based computational
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resources. Also, the optimization approach is faster in absolute numbers, as it needs
25.00% less time to execute all process requests following the constant arrival pattern
and 23.26% in the linear arrival pattern.

For both arrival patterns, the baseline approach is in many cases not able to comply
with the process deadlines (5 minutes), as can be seen from the backlog after all process
requests have arrived (see Figure 5.1). This can be traced back to the applied ad hoc
approach, i.e., it takes the applied ad hoc scaling approach in the baseline scenario too
long to react to new process requests and adjust the number of leased VMs accordingly.

Interestingly, for the constant arrival pattern, Figure 5.1a shows clearly that ViePEP
was able to optimize the system’s landscape almost perfectly, i.e., the number of active
VMs vary only a few times during the experiment. It can be perfectly seen that the
optimization approach (i.e., “Reasoner + Scheduler”) is not only faster than the baseline,
but also acquired overall less computational resources, i.e., VMs.

For the linear arrival pattern, the number of active cores increases in about the same
for the optimization and the baseline. However, the biggest difference is that in the
“Reasoner + Scheduler” approach, VMs with more than one core are acquired while
in the baseline approach only single-core VMs are acquired. This results in a slower
processing of the whole process queue since the overhead of the OS is comparable higher
in a single-core VM than in a quad-core VM. Single-core VMs are therefore less able to
handle a high load.

To summarize, the evaluation results show that the proposed optimization approach
indeed leads to a more efficient allocation of cloud-based computational resources to
single steps. While in our former evaluations (see Section 4.5.4) we achieved an average
saving of 3.79%, using an optimization approach as presented in this chapter, we were
able to achieve an average saving of 19.56% in terms of cost. Complementary to that, in
terms of time, in our former evaluation we were 6.71% (in average) minutes faster and
following the new approach we are now 24.14% faster than the baseline.

As a result, we can say that ViePEP 1.1 is able to provide a higher cost-efficiency than
approaches which do not take the process perspective into account – in our evaluation,
such approaches where represented by the baseline.

5.5 Conclusion

In this chapter, we:

• Presented an optimization model for resources allocation and scheduling for sequen-
tial elastic processes.

• Presented a heuristic based on the proposed optimization model.

• Implemented the heuristic in ViePEP 1.1.

• Evaluated the heuristic and compared it against a baseline which uses ad hoc-based
scaling.
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• Showed that using this heurist we were able to significantly save cost (19.56%) and
execution time (24.14%).

In the following sections we will extend the basic model of our process scheduling
and resource allocation approach by allowing more complex VM models (e.g., non-
proportional cost for VMs), minimum lease periods for VMs from a cloud provider
(Chapter 6), include data transfer cost when scheduling process steps in a hybrid cloud
environment (Chapter 7), and take into account more complex process patterns such as
XOR-block, AND-blocks and Repeat loops. While ViePEP 1.0 and ViePEP 1.1 were
conceptualized for a usage in a private cloud only, in Chapter 7, ViePEP is extend by the
possibility to combine public and private cloud-based computational resources resulting
in ViePEP 2.0.
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CHAPTER 6
Cost-based Optimization for
Complex Elastic Processes

In Chapter 4 we presented how cloud-based computational resources can be used for
sequential elastic process executions and in Chapter 5 we showed how leasing of such
resources can be optimized in a cost-efficient way. So far, we considered sequential
processes which represent only a small subset of real-world business processes, i.e., more
complex processes are very common in real-world business processes [108]. Hence, in
this chapter we extend the former approach by considering complex process patterns like
XOR-blocks, AND-blocks and Repeat loops (including their according joins). In addition,
we consider two additional aspects, first, penalty cost which accrue if SLAs get violated,
and second, the Billing Time Unit (BTU) which expresses the cost per leasing period.

6.1 Overview
So far, we provided solely resource scheduling and optimization approaches for sequential
elastic processes (see Chapter 4 and Chapter 5). Nonetheless, more complex process
patterns like XOR-blocks, AND-blocks or Repeat loop constructs have not been covered
yet, even though these process patterns are very common in real-world business processes
[108]. Also, despite being an important cost factor, penalty cost as well as the BTU,
which expresses the cost per leasing period, have not been regarded so far.

Hence, in this chapter, we substantially extend our former work on elastic process
scheduling and resource allocation by the following:

• We define a system model for elastic process landscapes, taking into account complex
process patterns, penalty cost, and BTUs.

• We present the Service Instance Placement Problem (SIPP), an optimization model
which aims at minimizing the total cost arising from enacting an elastic process
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landscape. Solutions to the SIPP describe execution plans in terms of process
scheduling and resource allocation. This includes the assignment of service instances
to VMs, the scheduling of service invocations, and the leasing and releasing of VMs.

• We implement the SIPP and create a new version of ViePEP resulting in ViePEP
2.0.

• We evaluate our approach extensively, showing its advantages compared to existing
ad hoc resource allocation and process scheduling strategies.

The remainder of this chapter is organized as following: Section 6.2 defines some
preliminaries for the approach presented in this chapter. Afterwards, Section 6.3 presents
the SIPP optimization problem. The results of the evaluation for the scheduling and
resource allocation algorithm through testbed experiments are described in Section 6.4.
Last but not least Section 6.5 concludes this chapter.

6.2 Preliminaries
We hereby define further preliminaries similar to Section 4.1. Although the basics
remain the same, we need to define some additional preliminaries before modeling the
multi-objective optimization model (SIPP):

As prior, we deploy ViePEP in the cloud which serves on the one hand as a BPMS
and on the other hand as a cloud controller in an intra or inter-organizational process
landscape. Process owners may define process models and request their enactment,
resulting in single process instances. Process models are composed of process steps. To
execute a process step, a service is deployed on a particular VM resulting in a certain
service instance and will then be invoked (service invocation). In the process landscape, we
distinguish between several different services, i.e., each service instance is of a particular
service type. The execution time of a service invocation, i.e., the timespan from starting
the invocation until it is finished, may take from a few seconds to several minutes. For
practical reasons, a VM may only run a single service instance.

However, this service instance may be invoked several times simultaneously and a
service (of a specific type) may be deployed several times on different VMs. Along
with the process request, process owners define deadlines, which are part of a SLA and
therefore an important constraint for the SIPP. Penalties accrue if a certain process
instance does not meet its SLA [69]. It is the general goal to minimize the cost of process
enactments, taking into account VM leasing cost and penalty cost.

There might be several process owners in the process landscape, requesting different
process instances at different points of time. As a result, the process landscape is
volatile and ever-changing, which needs to be taken into account when solving the SIPP.
Process landscapes could become very large, since the cloud offers theoretically unlimited
resources [59].

During scheduling, the BPMS needs to take into account process requests, running
process instances, leased VMs, service instances, the current and planned workloads of
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the leased VMs, as well as the execution times and workloads of different service types
on different VMs. Importantly, the BPMS is aware of future service invocations, since it
knows the next steps of requested process instances.

In contrast to our former work we do not only consider simple, sequential processes,
but also address more complex process patterns. Referring to [108], our scheduling
approach accounts for structured processes comprising parallel invocations, i.e., AND-
blocks (AND-splits with corresponding joins), as well as exclusive invocations, i.e., XOR-
blocks (XOR-splits with corresponding joins). Also Repeat loops that allow a repeated
execution of sub-processes are covered. Considering these complex process patterns
aggravates the scheduling problem substantially, since the next step is not always straight
forward in XOR-blocks or Repeat loops. For these, and for AND-blocks, several different
possibilities have to be considered during resource allocation and scheduling. Applying
the recursive pattern interlacing approach as presented in [95], the scheduling approach
proposed in this chapter is also capable of considering interlaced structures. Depending on
the openness to risk, a worst-, best- or average-case has to be performed prior scheduling,
i.e., taking the longest, the shortest or the average path through a process structure. In
our approach, we consider a worst-case scenario.

6.3 Complex Process Scheduling

For the enactment of complex elastic processes, cloud-based computational resources in
terms of VMs are used. In this respect, we aim at achieving an optimal scheduling and
placing of service instances, realizing corresponding process instances. For this reason,
leasing and releasing of cloud-based computational resources has to be realized so that
the cost for leasing aforementioned cloud-based computational resources is minimized.
Furthermore, we need to make sure that given constraints on QoS attributes such as
deadlines for the process instances are satisfied. In the work at hand, we exclusively
focus on execution time as QoS attribute. Other QoS attributes from the field of service
composition, e.g., availability, reliability or throughput [100], are not explicitly covered. It
should be noted that availability and reliability are partially regarded in our optimization
model, since process requests are carried out as long as there are computational resources
from a cloud provider available. Since clouds offer virtually unlimited resources, the
limiting factor for throughput is the missing capability of the BPMS to handle an
unlimited number of processes at the same time. Scalability of the BPMS is however a
research topic on its own.

If a violation of QoS constraints and therefore a SLA breach takes place, penalties
accrue. Thus, the closer the deadline for a certain process instance is, the higher is the
importance for scheduling and invoking corresponding service instances to enact the
particular process instance in time. If not carefully considered and scheduled, the BPMS
provider will either have to lease and pay for additional VMs to host service invocations
that cannot be delayed any further, or to pay the aforementioned penalties. To avoid
such situations where extra resources have to be leased or penalties have to be paid due
to an inefficient scheduling strategy, the scheduling of service invocations along with
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the leasing and releasing of cloud resources has to be optimized. Hence, we formulate
the problem of scheduling and placing service instances on VMs for realizing process
instances – the SIPP – as a Mixed Integer Linear Programming (MILP) optimization
problem.

The applied system model is described in the subsequent Section 6.3.1. Afterwards, a
formal specification of the corresponding optimization model is provided in Section 6.3.2,
and finally, the model is extended in Section 6.3.3 to enable multi-period scheduling.

6.3.1 System Model

Within this section, we provide the system model needed for process scheduling and
resource allocation as an optimization model. It has to be noted that a similar model is
already presented in Section 5.3.2. However, while in the former chapter we provided an
optimization model for sequential elastic processes, within the current chapter, we provide
an optimization model for complex elastic processes. In addition, beside of considering
complex process patterns (AND-blocks, XOR-blocks, and Repeat loops), we also consider
the BTU, i.e., the cost per leasing period, different types of resources, e.g., CPU and
RAM, penalty cost and others. Hence, we present in the following a coherent description
of the needed system mode.

It has to be noted that the optimization problem described in this chapter per se refers
to a certain time period. For considering different time periods, we use the parameter t
as index which indicates the start of a period1. The concrete time period is indicated by
the parameter τt and is given by a concrete point in time (e.g., “27.09.2013, 13:37:00”
CET) that corresponds to the beginning of that (optimization) time period. In order
to account for different types of process instances, we consider multiple process models.
The set of process models is labeled with P , where p ∈ P = {1, ..., p#} indicates a certain
process model. The set of process instances that have to be considered during a certain
period starting at t according to a certain process model p is indicated by Ip, where
ip ∈ Ip = {1, ..., i#p } refers to a certain process instance. In this respect, it has to be
noted that considering a certain process instance ip in the period starting at t does not
necessarily result in invoking corresponding service instances in this period. It rather
ensures that respective service invocations are acknowledged as potential candidates for
scheduling. Thus, they may be scheduled in the time period starting at t or not.

Service instances that have to be invoked for accomplishing a process instance ip are
covered in the set Jip , where jip ∈ Jip = {1, ..., j#

ip
} refers to a certain service invocation

for accomplishing a specific step in process instance ip. Service invocations that have
already been scheduled in previous optimization periods are referred to as jiprun. They
are covered in the set Jiprun. Since the steps within a certain process instance have to be
invoked in a certain order, we may only schedule service invocations for the next step(s)
in the optimization period starting at t. We label the corresponding service invocations
accomplishing the next step(s) with j∗ip ∈ Jip . The execution time of service invocation
jip , i.e., the duration of the service invocation, is indicated by ejip

.
1For a concise overview of the parameters used in this chapter, see Table 6.2

66



In order to schedule jip , the corresponding service type has to be instantiated on a
VM. In this chapter, we account for different VM types. The set of VM types is indicated
by the parameter V , where v ∈ V = {1, ..., v#} refers to VM type v. The corresponding
resource supply of a VM of type v in terms of processing units (CPU) and main memory
(RAM) is indicated by sCv and sRv . The unit of CPU resources is percent, i.e., a single-core
VM has 100% CPU, a dual-core VM has 200% CPU, and so on, and the unit for RAM is
Mega Bytes (MB). Analogously, the resource demand of a certain service invocation jip
with respect to CPU in percent and RAM in MB is indicated by rC(jip ,kv) and r

R
(jip ,kv). An

instance k of a VM of type v is referred to as kv. Although virtually unlimited, we assume
the number k#

v of leasable VMs of type v to be limited in a certain time period starting
at t and specify the set of VM instances of type v as Kv = {1, ..., k#

v }, where kv ∈ Kv.
The cost for leasing one VM instance of type v is indicated by cv. The remaining, free
resource capacities of a VM instance kv regarding CPU and RAM after scheduling and
placing of service invocations is referred to as fCkv

and fRkv
.

As previously stated, a service has to be deployed on a VM in order to be invoked
(resulting in a particular service instance). The corresponding deployment time depends
on the type of the service, i.e., the service type which is referred to as stj . The service
deployment time is indicated by ∆stj and expressed in milliseconds. Parameter z(stj ,kv ,t) ∈
{0, 1} indicates if a service of type stj is already deployed (z(stj ,kv ,t) = 1) at VM instance
kv in the time period starting at t. In addition, the respective VM instance needs to be
up and running in order to enable service deployment and invocation. The corresponding
VM start-up time (in milliseconds) for a VM instance of type v is labeled with ∆v,
whereas ∆ = maxv∈V (∆v) refers to the maximum start-up time. Whether the VM
instance kv is already up and running in a time period starting at t is indicated by the
parameter β(kv ,t) ∈ {0, 1} – similar to z(stj ,kv ,t).

The remaining execution time in milliseconds for a process instance ip is indicated by
eip . It can be computed by aggregating the execution times ejip

of service invocations jip
according to the structure of process instance ip. As previously stated, we account for
XOR-blocks, AND-blocks, and Repeat loops in addition to Sequences. Corresponding
aggregation specifications accounting for a worst-case analysis are provided in Table 6.1
– without an index for a specific process instance ip. For the sake of simplicity, we
assume the services’ execution times not to be dependent on the concrete VM instance kv.
Accounting for VM-dependent service execution times could be achieved straightforwardly,
since it does not affect our approach for computing optimal solutions to the SIPP. Only
the way of computing the execution times would have to be adapted. Instead, we account
for VM resources in terms of CPU and RAM as previously stated.

For a Sequence, the execution times of the respective service invocations have to be
added up. In order to account for a worst-case analysis, we need to additionally consider
the corresponding service deployment times ∆stj and the worst VM start-up time ∆,
each expressed in milliseconds. With respect to an AND-block, it is necessary to account
for the different paths l within the AND-block. The set of all paths is indicated by
L = {1, ..., l#}, where l refers to a certain path. In order to separate the set of paths for
AND-blocks from the set of paths for XOR-blocks, we use additional indices a (for AND)
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Table 6.1: Worst-Case Aggregation Specifications

Pattern Execution time (e)
Sequence eseq =

∑
j∈Jseq

(ej + ∆stj + ∆)

AND-block eAND = max
l∈La

(
∑
j∈J l

(ej + ∆stj + ∆))

XOR-block eXOR = max
l∈Lx

(
∑
j∈J l

(ej + ∆stj + ∆))

Repeat loop eRL = re · eseq

and x (for XOR). In order to obtain the execution time for an AND-block, we need to
compute the execution times for each of the paths l ∈ La separately and then take the
maximum, which is indicated in Table 6.1. We thereby implicitly assume the steps within
a path of the AND-block to be arranged sequentially, so that the corresponding execution
time can be computed according to the aggregation specification for a Sequence. In order
to account for interlaced structures, we apply a technique for recursively combining the
provided aggregation specifications.

The aggregation specification for computing the execution time for an XOR-block is
basically the same as for an AND-block – at least in terms of a worst-case analysis since
we need to consider the worst path in terms of execution time, i.e., the longest path. But
in contrast to an AND-block, only one of the paths within an XOR-block will finally be
invoked. With respect to Repeat loops, the structure that has to be repeated is invoked
multiple times. For a worst-case analysis, we assume a maximum number re of repeated
invocations. With respect to Table 6.1, we consider a Sequence, indicated by eseq, as the
structure to be repeatedly invoked. However, also single process steps or whole processes
comprising AND-/XOR-blocks could be subject for repeated invocations and, thus, for
Repeat loops.

The deadline DLip indicates at which point in time the enactment of process instance
ip has to be finished. If DLip is violated, penalty cost will accrue. The penalty cost
depends on time and duration, respectively, the invocation of process instance ip took
longer than restricted by the deadline, indicated by epip , and on the penalty cost per time
unit, referred to as cpip .

For finally deciding whether to schedule a certain service invocation jip in the
optimization period starting at t, we use binary decision variables x(jip ,kv ,t) ∈ {0, 1}.
A value x(jip ,kv ,t) = 1 indicates that the service invocation jip of process instance ip
should be scheduled in the period starting at t on the k-th VM of type v (and invoked
afterwards), whereas a value x(jip ,kv ,t) = 0 indicates that the scheduling and invocations
can be delayed. For indicating if we need to lease a certain VM instance kv of type v in
the period starting at t, the decision variable y(kv ,t) ∈ N0 is used. In contrast to x(jip ,kv ,t),
y(kv ,t) may take values greater than 1 indicating that VM instance kv should be leased in
a optimization period starting at t for y(kv ,t) BTUs. The BTU is the minimum leasing
duration. Thus, releasing a VM before the end of the BTU corresponds to wasting paid
resources. The actual leasing duration of a particular VM is always a multiple of the
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BTU. The remaining leasing duration for a specific VM instance kv in the period starting
at t is labeled with d(kv ,t). The total number of VMs of type v to lease in the period
starting at t is indicated by γ(v,t).

Having described the underlying system model in this section, the subsequent sections
present the optimization problem. As described, the optimization problem takes as input
a set of process instances Ip including their process steps and corresponding service
invocations Jip . In addition to that, a set of computational resources is needed (V ). An
overview of all veraibles is presented in Table 6.2.

69



Table 6.2: Variable Descriptions for the SIPP

Variable Name Description
v ∈ V =
{1, ..., v#}

V specifies the set of VM types and v is a specific type.

kv ∈ Kv =
{1, ..., k#

v }
Kv specifies the amount of VMs of type v.

kv Defines the kth VM instance of type v.
p ∈ P =
{1, ..., p#}

P specifies the set of process models and p is a specific process
model.

ip ∈ Ip =
{1, ..., i#p }

IP is the set of all process instances, and ip represents a specific
process instance of process model p.

jip , j
∗
ip ∈ Jip Jip is the set of process steps of a process instance ip which have to

be executed to fulfill ip. jip is a specific process step of the process
instance ip and j∗ip is the next process step of process instance ip.

jip
run ∈ Jrunip Jrunip defines a set of running process steps of the process instance

ip and jiprun defines specific running process step of the process
instance ip.

eip eip is the remaining execution duration of process instance ip.
ejip

,erunjip
,erunkv
jip

ejip
is the remaining execution duration of step j of the process

instance ip. erunjip
(or erunkv

jip
) is the remaining execution duration of

the already running process step j of process instance ip (on the
k-th VM of type v).

exjip
, exj∗

ip
exjip

, ex∗jip
are helper variables defining the combined remaining

execution, remaining deployment time and VM startup time if the
process step j is scheduled.

êlip ,ê
s
ip Defines the combined remaining execution, remaining deployment

time and VM startup time if the process step j is not yet scheduled
or running. The indices l and s define if this step is part of a
complex pattern (AND-block, XOR-block or Repeat loops) (l) or
a sequential process (s).

epip Defines the amount of penalties which accrue if the process instance
ip is delayed.

DLip Defines the deadline for the process instance ip, i.e., a specific
point in time represented as the time elapsed since 01/01/1970 in
milliseconds.

t, τt, τt+1, τts t defines the beginning of a time period, τt defines the current time
period, and τt+1 defines the next time period, i.e., a point of time
in the future and τts defines a specific point of time.

sCv , sRv Defines the amount of total resources in terms of CPU (sCv ) and
RAM (sRv ) for a particular VM of type v.

Continued on next page
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Table 6.2 – Continued from previous page
Variable Name Description
fCkv

, fRkv
Defines the available resources of the VM v in terms of CPU and
RAM.

rC(jip,kv ),
rR(jip,kv )

Defines the amount of required resources for a specific service
invocation jip,kv of process instance ip on a specific VM instance
kv in terms of CPU (rC) and RAM (rR).

stj Defines the service type of the process step j.
∆stj ,∆jip

Defines the time it takes to deploy a service of type st of the process
step j or of a specific process step j of process instance ip.

∆v, ∆ ∆v defines the time it takes to start a new VM of type v expressed
in milliseconds. ∆ defines the max of starting a VM of any type,
i.e, maxv∈V (∆v).

z(stj ,kv ,t) Indicates whether a specific service type stj is deployed on the VM
kv in time period t.

β(kv ,t) Indicates if the VM kv is/was running in the time period starting
at t.

eseqip , eLa
ip
, eLx

ip
,

eRLip

Defines the execution time for a sequence (eseqip ), AND-block (eLa
ip

),
XOR-block (eLx

ip
), or Repeat loop (eRLip ) for a specific process in-

stance ip.
l ∈ L =
{1, ..., l#}, La,
Lx, Lre

L indicates the set of all paths and l indicates a specific path
within a process. La, Lx, Lre define the paths for AND-blocks,
XOR-blocks or Repeat loops.

re Defines the maximum amount of repetitions within a Repeat loop.
cpip Defines the cost per time unit of delay for the process instance ip.
x(jip ,kv ,t) Defines if the process step j of process instance ip should be invoked

on VM kv in the time period t.
y(kv ,t) Defines how often a VM kv should be leased in time period t.
BTU Defines the Billing Time Unit (BTU), i.e., one leasing duration,

i.e., a certain time period in milliseconds.
M M is a constant needed to give some constraints a higher weight.
ε Defines a short time period in milliseconds which is used to prevent

deadlocks.
d(kv ,t), d(kv ,t−1) Defines the remaining leasing duration of VM kv in time period t

or t− 1.
γ(v,t) Defines the amount of leased VMs of type v in the time period

starting at t.
cv Defines the leasing cost of VM type v.
gkv ,t Helper variable indicating if the VM kv is running in the time

period starting at t or needs to be started.
Continued on next page
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Table 6.2 – Continued from previous page
Variable Name Description
ωCf , ωRf Helper variables, representing constant values to give more weight

to a term in the optimization function.
z(jip ,kv ,t) This variable indicates if the service type of a service invocation jip

has the same service type as the service instance which is deployed
at VM kv in the time period starting at t.

6.3.2 Optimization Problem

In this section, we model the scheduling and placement of service invocations for enacting
corresponding process instances – the SIPP – as an optimization problem. Using
the system model provided in Section 6.3.1, we gradually develop the corresponding
optimization model for the current optimization period starting at t in this section. A
multi-period extension of the optimization problem is discussed in Section 6.3.3.

min
∑
v∈V

cv · γ(v,t)

+
∑
p∈P

∑
ip∈Ip

cpip · e
p
ip

+
∑
v∈V

∑
kv∈Kv

(ωCf · fCkv
+ ωRf · fRkv

)

−
∑
p∈P

∑
ip∈Ip

∑
jip∈J∗

ip

1
DLip − τt

x(jip ,kv ,t)

(6.1)

In (6.1), the objective function, which is subject for minimization, is depicted. It comprises
four terms. In the first term, i.e,

∑
v∈V

cv · γ(v,t), we compute the total cost accruing due to

leasing γ(v,t) VM instances of type v at a cost of cv per VM instance in the period starting
at t. The second term, i.e.,

∑
p∈P

∑
ip∈Ip

cpip ·e
p
ip
, accounts for penalties arising due to violating

deadlines. For computing these penalties, a linear penalty function is applied [69]: We
multiply the durations epip , i.e., the time units the invocations of process instances ip
took longer than restricted by the corresponding deadline, with the cost per time unit,
represented by cpip . The third term, i.e.,

∑
v∈V

∑
kv∈Kv

(ωCf · fCkv
+ ωRf · fRkv

), regards the sum

of free resource capacities fCkv
(CPU) and fRkv

(RAM) for all (leased) VM instances –
weighted with corresponding weights ωCf and ωRf . Finally, in the fourth term, we calculate
the difference between the deadlines DLip for all process instances and the current period
τt and compute the corresponding reciprocal value. This way, we deduce a measure for
the urgency and importance, respectively, for each process instance, since the closer the
deadline is for a process instance ip, the larger is 1

DLip−τt
.

With the first term, we aim at minimizing the total cost. With the second term,
we aim at minimizing penalty cost. With the third term, we aim at minimizing leased
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but unused cloud-based computational resource capacities. With the fourth term, we
aim at maximizing (note the minus in front of the term) the relative importance of the
scheduled service invocations. Since the minimization of the leasing cost and the penalty
cost should have highest priority, we set the weights ωCf and ωRf to a very low value such
as 0.000001. Since the actual values for the deadlines DLip and the current period τt are
quite large (as they are represented as the time elapsed since 01/01/1970 in milliseconds),
their difference remains large, so that the reciprocal value becomes rather small. Thus,
the minimization of leasing cost and penalty cost receives the highest (relative) weights
and thereby priorities within the objective function.

The constraints in (6.2) demand the deadlines DLip not to be violated for all p ∈ P ,
ip ∈ Ip, jip ∈ Jrunip . For this, the sum of the remaining execution time eip and the
next optimization period starting at τt+1 has to be lower or equal with respect to the
deadline. The length of the current optimization period, consequently, the start of the
next optimization is defined by t+ 1 and is restricted in (6.3). τt+1 has to be greater or
equal to the current optimization period at τt plus a small value ε > 0. ε is needed to
avoid optimization deadlocks resulting from a too small or negative value for τt+1.

τt+1 + eip + erunjip
≤ DLip + epip (6.2)

τt+1 ≥ τt + ε (6.3)

The remaining execution time eip is computed in (6.4) for all p ∈ P , ip ∈ Ip.
Depending on the structures of the process instances, different remaining execution times
apply, i.e., for sequences using (6.5), for AND-blocks (6.6), for XOR-blocks (6.7) and for
Repeat loops (6.8). Notably, a process instance may consist of a combination of different
process patterns, which have to be summed up (see (6.4)).

As indicated in (6.5)-(6.8), the remaining execution time eip can be reduced if a
service invocation jip is scheduled on a VM instance kv. The helper variables esip and elip
are defined in (6.10) and (6.11). As described in (6.9), in this case, the corresponding
execution time ej∗

ip
along with the service deployment time ∆j∗

ip
and VM start-up time

∆ will be added up, resulting in the variable exj∗
ip

and subtracted from the remaining
execution time eip . Note that execution times ejip

for service invocations that have
already been scheduled in previous optimization periods will be set to zero. Further, since
steps within AND-blocks may be invoked in parallel, it is possible to schedule multiple
next service invocations – one next service invocation per branch of the AND-block.

eip = eseqip + eLa
ip

+ eLx
ip

+ eRLip (6.4)

eseqip =

ê
s
ip − exj∗

ip
, if x(j∗

ip
,kv ,t) = 1

êsip , else
(6.5)
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eLa
ip

=


max
l∈La

(êlip − exj∗
ip

) , if x(j∗
ip
,kv ,t)

max
l∈La

(êlip) , else
(6.6)

eLx
ip

=


max
l∈Lx

(êlip − exj∗
ip

) , if x(j∗
ip
,kv ,t)

max
l∈Lx

(êlip) , else
(6.7)

eRLip =

re · ê
s
ip − exj∗

ip
, if x(j∗

ip
,kv ,t)

re · êsip , else
(6.8)

exj∗
ip

=
∑
v∈V

∑
k∈Kv

((ej∗
ip

+ ∆j∗
ip

+ ∆)x(j∗
ip
,kv ,t)) (6.9)

êsip =
∑

jip∈J
seq
ip

(ejip
+ ∆jip

+ ∆) (6.10)

êlip =
∑

jip∈J l
ip

(ejip
+ ∆jip

+ ∆) (6.11)

Since it might be the case that in an optimization period starting at t certain service
invocations jip are currently running, we need to add the corresponding remaining
execution times, indicated by erunjip

, in (6.2). If the deadlines DLip were violated, the
corresponding durations epip would increase which in turn would lead to higher penalty
cost (see (6.1)).

The constraints in (6.12) make sure that for all v ∈ V , k ∈ Kv, VM instances kv will
be leased if service invocations jip are to be scheduled on them. This is indicated by a
value of 1 for the corresponding decision variables, i.e., x(jip ,kv ,t) = 1. The corresponding
VM instance kv has already been leased (and paid for) in a previous optimization period,
which is indicated by a value of 1 for the parameter βkv , i.e., β(kv ,t) = 1. Or we need
to set the corresponding decision variable y(kv ,t) accordingly, i.e., y(kv ,t) ≥ 1. Since it
may be the case that multiple service invocations are intended to be scheduled on VM
instance kv, the sum of the left-hand side of (6.12) might exceed a value of 1. Thus, in
order to satisfy these constraints, we multiply (β(kv ,t) + y(kv ,t)) with a sufficiently large
value M , i.e., 1,000,000. We chose this value since it is unlikely that there is a VM which
is able to host more than 1,000,000 parallel service invocations.

∑
p∈P

∑
ip∈Ip

∑
jip∈Jip

x(jip ,kv ,t) ≤ (β(kv ,t) + y(kv ,t)) ·M (6.12)

With respect to scheduling service invocations on a VM instance kv, we demand the
corresponding service types stj in (6.13) to be the same. This way, we aim at achieving
that on a specific VM instance only one service instances of the same type is deployed.
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Differently stated, service instances with different service types may not be deployed at
the same VM instance.

x(j1
i1
p1
,kv ,t) + x(j2

i2
p2
,kv ,t) ≤ 1 (6.13)

The constraints in (6.14) and (6.16) make sure that for all v ∈ V , k ∈ Kv the resources
(with respect to CPU and RAM) required by the service invocations that either already
run on VM instance kv or are scheduled to run on it, do not exceed the respective capacity
of a VM of the type v. The remaining free capacities fCkv

and fRkv
are determined in

(6.15) and (6.17). Note that we consider free capacities fCkv
and fRkv

for VMs that are
either already running or leased in the period starting at t. For this, we use an additional
variable g(kv ,t) ∈ {0, 1}, which takes a value of 1 only if VM kv is either running (βkv = 1)
or leased (y(kv ,t) ≥ 1) in the period starting at t. This is indicated in (6.18)-(6.20) for all
v ∈ V , k ∈ Kv. ∑

p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)
rC(jip,kv )x(jip ,kv ,t) ≤ s

C
v (6.14)

g(kv ,t) · s
C
v −

∑
p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)
rC(jip,kv )x(jip ,kv ,t) ≤ f

C
kv (6.15)

∑
p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)
rR(jip,kv )x(jip ,kv ,t) ≤ s

R
v (6.16)

g(kv ,t) · s
R
v −

∑
p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip
∪Jrun

ip
)
rR(jip,kv )x(jip ,kv ,t) ≤ f

R
kv (6.17)

g(kv ,t) ≥ β(kv ,t) (6.18)

g(kv ,t) ≥ y(kv ,t) (6.19)

g(kv ,t) ≤ β(kv ,t) + y(kv ,t) (6.20)

The constraints in (6.21) demand that the remaining leasing duration dkv plus the
number y(kv ,t) of BTU for VM kv (for all v ∈ V , k ∈ Kv) is larger or equal to the sum of
remaining execution time ejip

, the deployment time ∆jip
(if the corresponding service

type is not yet deployed, i.e., z(jip ,kv ,t) = 0), and the VM start-up time ∆, provided the
VM is not yet running (β(kv ,t) = 0). As we conduct a worst-case analysis, this remaining
leasing duration has to be greater or equal to the service execution times of all next
service invocations (for all p ∈ P , ip ∈ Ip, jip ∈ J∗ip) that should be scheduled on this VM
including the corresponding service deployment and VM start-up time.
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This way, we make sure that service invocations scheduled on a VM instance will
not be moved to another VM instance during their invocation. The same restriction is
provided by the constraints in (6.22) for all currently running service invocations. In
order to make sure that the running service invocations can be finished on the concrete
VM kv where they have previously been assigned to, we explicitly consider this VM kv
by using an additional index kv for erunkv

jip
in (6.22). Since these service invocations are

already running, we do not need to consider service deployment and VM start-up times.

(ejip
+ ∆jip

· (1− z(jip ,kv ,t)) + ∆ · (1− β(kv ,t)))x(jip ,kv ,t) ≤ d(kv ,t) + y(kv ,t) ·BTU (6.21)

e
runkv
jip

≤ d(kv ,t) + y(kv ,t) ·BTU (6.22)

The sum of the y(kv ,t) ≥ 1 (for v ∈ V ) values indicates the total number of VM
instances and for how many BTUs they have to be leased. This sum determines γ(v,t) in
(6.23). In this respect, it has to be noted that y(kv ,t) includes both, the decision, which
concrete VM instance kv to lease and for how many BTUs.∑

k∈Kv

y(kv ,t) ≤ γ(v,t) (6.23)

Finally, in (6.24), we make sure that for all p ∈ P , ip ∈ Ip, jip ∈ J∗ip each service
invocation can be scheduled only on one VM instance. In (6.25), we set the decision
variables for all service invocations already running (for all p ∈ P , ip ∈ Ip, jip ∈ Jrunip ,
v ∈ V, k ∈ Kv) in the period starting at t to 1. The constraints in (6.26)-(6.29) restrict
the decision variables x(jip ,kv ,t) (for all p ∈ P , ip ∈ Ip, jip ∈ J∗ip , v ∈ V, k ∈ Kv), y(kv ,t)
(for all v ∈ V , k ∈ Kv), and epip (for all p ∈ P , ip ∈ Ip) to take values from {0, 1}, N0,
and R+, respectively. ∑

v∈V

∑
k∈Kv

x(jip ,kv ,t) ≤ 1 (6.24)

x(jip ,kv ,t) = 1 (6.25)

x(jip ,kv ,t) ∈ {0, 1} (6.26)

g(kv ,t) ∈ {0, 1} (6.27)

y(kv ,t) ∈ N0 (6.28)

epip ∈ R+ (6.29)
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The optimization model for the current optimization period starting at t is obtained
by assembling (6.1)-(6.29).

Having defined the optimization model used for computing an optimal solution to
the SIPP in the period starting at t, we are now able to realize a multi-period scheduling
as described in the next section.

6.3.3 Multi-period Scheduling Approach

Applying the approach for computing an optimal solution to the SIPP as presented in
the previous Section 6.3.2, we obtain a scheduling plan, i.e., which service invocation to
schedule in the period starting at τt. But as new requests for the invocation of further
process instances ip may arise during the scheduled service invocations, the previously
computed optimal solution might no longer be optimal. Thus, we may not only account
for one single optimization period but need to conduct multiple optimization steps.

In each optimization step, we only schedule the next service invocations for the process
instances ip which cannot be delayed any further according to (6.2). For this, we extract
the decision variables x(jip ,kv ,t), lease and start corresponding VMs kv (if they have not
been leased and started yet), deploy respective service invocations jip on aforementioned
VMs (if they have not been deployed yet), and initiate and monitor their invocation in
terms of success and execution time.

The next optimization period in time, i.e., where the next optimization step will
be carried out, is indicated by the variable τt+1 – as a result of the optimization. If
the invocation of a process instance ip is finished until τt+1, we determine whether a
QoS violation occurred, i.e., we compute epip . In case of a QoS violation, i.e., if epip > 0,
corresponding penalties accrue.

Immediately prior to the next optimization step, i.e., for the next optimization period
at τt+1, which then becomes the new current optimization period at τt in (6.3), we need
to update certain parameters as described subsequently. We set:

• β(kv ,t) = 1 if VM kv runs in τt; 0 otherwise.

• z(jip ,kv ,t) = 1 if service invocation jip with the same service type stj = stjip
is

already deployed at VM kv in τt; 0 otherwise.

• d(kv ,t) = d(kv ,t−1) +y(kv ,t) ·BTU−(τt−τt−1) to account for the time elapsed between
the previous (τt−1) and the current (τt) optimization period when computing the
remaining leasing duration of VM kv in the optimization period τt.

Service invocations that have already been scheduled in the previous periods are
referred to as jrunip . For such service invocations, we determine the remaining execution
times erunjip

as follows: We subtract the time elapsed since the point in time where the
corresponding service invocations have been scheduled (τts) from the sum of the services’
execution times, the VM start-up times, and the services’ deployment times. This is
shown in (6.31) whereas êjip

is defined in (6.30). Optimization period τts refers to the
period where service invocation jip has been scheduled.
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êjip
= ejip

+ ∆jip
+ ∆ (6.30)

erunjip
=

0 , if jip is finished
max

(
0, êjip

− (τt − τts)
)

, else
(6.31)

Referring to (6.31), the remaining execution times are considered as 0 if the corre-
sponding service instances (jip) have already been invoked, i.e., the service invocation
is finished. Further, by taking the maximum in (6.31), we make sure not to consider
negative remaining execution times. This means, if an invocation lasts longer than
expected, the SIPP has to include this information in the next optimization period, i.e.,
the corresponding process instance will have a higher priority as it may get delayed
otherwise.

Having set up and updated the necessary parameters for the next period, we conduct
another optimization step. According to the results of this newly conducted optimization
step, i.e., according to the values of the decision variables x(jip ,kv ,t), we schedule and
invoke corresponding service instances. Continuing this optimization and scheduling
procedure results in an efficient scheduling strategy, which takes optimal scheduling
decisions (at the optimization period τt) into account and minimizes unused, free VM
capacities (see the usage of fCkv

and fRkv
in (6.1)).

6.4 Evaluation
As a proof of concept, the proposed SIPP model has been thoroughly evaluated. We
apply our prototype and testbed framework ViePEP as introduced in Section 2.4 and
Section 4.2. However, since we follow a different approach, i.e., using a optimization
model for process scheduling and resource optimization, we had to re-implement ViePEP
resulting in ViePEP 2.0.

In the following subsections, we present first ViePEP 2.0 in Section 6.4.1, second, the
evaluation setting in Section 6.4.2, third the applied metrics in Section 6.4.3, and last
but not least, we discuss the quantitative evaluation results in Section 6.4.4.

6.4.1 ViePEP 2.0

Figure 6.1 shows the high-level architecture of the enhanced ViePEP. As in the former
version, ViePEP 2.0 depicts five top-level entities: A Client can model business processes
and define optional SLAs, i.e., defining deadline constraints for the full process. The
business process can be requested for execution to the BPMS VM through the Process
Manager.

The Backend VM remains mostly unchanged. It hosts the software-based services on
an application server, e.g., Apache Tomcat and a Monitor which monitors the deployed
services in terms of CPU and RAM usage. The monitored data is forwarded to the
BPMS VM through a JMS-based Message Queue.
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Figure 6.1: ViePEP 2.0 – Architecture

The BPMS VM has partly been reimplemented. First, it hosts the Process Manager
which acts as a single-point entry component to the Client. Business processes get
requested through it. After being requested, the process instances are immediately stored
within a Database and the scheduling and resource optimization is triggered. While in
the latest version of ViePEP, i.e., version 1.1, two components were responsible for doing
that, in ViePEP 2.0 it is just one component, i.e., the Reasoner which implements the
SIPP model from Section 6.3.2.

The output of the SIPP model is two-fold. First, it defines how many resources
should be leased or which already leased resources can be released. Hence, the Reasoner
is connected with an Action Executor which is connected to the cloud infrastructure. It
can instantiate or terminate VMs. In addition, the Action Executor is connected with a
Service Registry which hosts the needed software-based services in form of WAR-files.
Hence, the Action Executor is also responsible for deploying the needed services among
the leased resources. The second output of the SIPP model is a complete scheduling
plan, i.e., this plan defines on which VM instance a specific service instance should be
invoked. In order to do this, the Action Executor is connected with the Service Executor
which either invokes the requested services immediately or maintains a queue for future
invocations. Beside of these subcomponents, a Backend Watchdog is employed. It receives
new monitoring data via the Message Queue and is able to verify whether the data
indicates a critical state or is still in a normal state. In case of an alert, e.g., the CPU or
RAM load is too high on a specific VM instance, the Backend Watchdog can notify the
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Table 6.3: Evaluation Process Models

Name |Steps| |XOR| |AND| |loops|
1 3 0 0 0
2 2 1 0 0
3 3 0 1 0
4 8 0 2 0
5 3 0 1 0
6 9 1 1 0
7 8 0 0 0
8 3 0 1 0
9 4 1 1 1
10 20 0 4 0

Reasoner in order to trigger resolving the SIPP model with updated information to find
an appropriate countermeasure.

ViePEP 2.0 is implemented in form of an OSGi 4.3-based framework2, i.e., Apache
Karaf 2.3.23. As a communication engine between the Backend VMs and the BPMS
VM we apply a JMS-based Message Queue, i.e., Apache ActiveMQ 5.7.04. ViePEP 2.0
itself is implemented using Java 1.7. Both the BPMS VM and the Backend VMs are
running in a private cloud testbed running OpenStack (OpenStack Folsom5). To solve the
optimization problem, the SIPP is modeled using Java ILP6. It provides a Java interface
to MILP solvers – in ViePEP 2.0, IBM CPLEX7 is applied.

6.4.2 Setting

Test Collection

To evaluate the proposed optimization approach, we choose a subset of the SAP reference
model [25, 56]. The SAP reference model has been analyzed and exploited in various
scientific papers and provides a well-known and widely accepted foundation for our
evaluation [80]. Out of the 604 process models in the SAP reference model, we choose
10 exemplary process models which feature different degrees of complexity in terms of
process patterns (see Appendix B).

Table 6.3 shows the basic characteristics of the 10 different models, i.e., if a model
includes AND-blocks, XOR-blocks, Repeat loops or a combination of them. Notably, each
split (AND, XOR) also includes a join. Figure 6.2 shows two example process models,
namely No. 5, which contains an XOR-block, and No. 9, which contains an AND leading

2http://www.osgi.org/Main/HomePage
3http://karaf.apache.org/
4http://activemq.apache.org
5http://www.openstack.org/software/folsom/
6http://javailp.sourceforge.net/
7http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Figure 6.2: Process No. 5 (top), Process No. 9 (bottom)

to two new branches. No. 9 also contains a Repeat loop. A full presentation of all 10
used business process models can be found in Appendix B.

While process models in the SAP reference model usually contain some human-
provided services, we are focusing on software services only. Hence, for all services in the
process models, we deploy services with differing degrees of computational complexity,
resource demands, and execution duration. For this, we apply the lookbusy load generator8,
which is a configurable tool able to generate a particular CPU load for a particular
timespan.

Following our assumption that services are shared among processes, we generate 10
different software services as described in Table 6.4. Duration and CPU Load are mean
values µcpu and µdur of normal distributions as described in (6.32) and (6.33). We assume
that the services’ actual resource consumption varies to some extent for each service
invocation. We assume σcpu = µcpu

10 respectively σdur = µdur
10 and we only select values

between 95% and 105% of the provided mean value to conduct a reproducible evaluation.

f(x, µcpu, σcpu) = 1
σcpu

φ

(
x− µcpu
σcpu

)
(6.32)

f(x, µdur, σdur) = 1
σdur

φ

(
x− µdur
σdur

)
(6.33)

To estimate the need for computational resources for a service invocation on different
VMs, we assume that each service invocation can be fully parallelized among the available
CPUs. This means, while the mean execution time stays the same, the amount of required

8http://devin.com/lookbusy/
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CPU load is divided by the number of available cores. For example, if a service invocation
needs 100% of a single-core VM, only a quarter of it will be used on a quad-core VM, i.e.,
25% for each core. This enables 4 times more simultaneous invocations of that particular
service instance on a quad-core VM compared to a single-core VM.

Table 6.4: Evaluation Services

Service
No.

CPU Load
in % (µcpu)

Service Makespan
in sec. (µdur)

1 5 30
2 10 80
3 15 120
4 30 100
5 45 10
6 55 20
7 70 40
8 125 20
9 125 60
10 190 30

Applied SLAs

SLAs are defined on process level and contain the deadline for the complete process
enactment. To evaluate our optimization approach under different settings, two different
SLAs are linked to each process model and evaluated in separate runs. The first set of
SLAs provides rather “lenient” values, i.e., the SLAs are defined with significant leeway
for delays, while the second set provides more strict values. For the lenient SLAs, the
average violation threshold is set to 2.5 ∗ EDIp , while for the strict SLAs, the threshold
is 1.5 ∗EDIp , where EDIp is the mean execution time of a process model. Those values
were chosen with having in mind the start-up time for VMs ∆ and the time which is
needed to deploy the respective service onto them, i.e., the service deployment time ∆stj .

Process Request Arrival Patterns

Similar to our former evaluations from Section 4.5 and Section 5.4 we apply different
process request arrival patterns in order to evaluate our approach under different load.
The first scenario follows a Constant arrival pattern, i.e., in regular intervals (120 seconds),
we choose 5 instances of different process models, i.e., in the first round we request process
model No. 1 to 5, in the second round No. 6 to 10, the third round again No. 1 to 5 etc.
This is repeated until a total of 50 process instance requests are sent to ViePEP.

The second arrival pattern follows a Pyramid-like function and the process instances
requested at particular points of time are randomly chosen: A total of 100 process
instances are put in a randomly shuffled queue and a different amount of process instance
requests is sent simultaneously. We start with a low number, e.g., with 1 instance a time,
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increase it to a peak, and decrease it again to 1 instance request. After a few iterations,
the amount increases again slowly to a peak until all 100 instance requests are sent to
ViePEP. The detailed function can be found in (6.34).

f(n) = a



(n+ 1)/(n+ 1) if 0 ≤ n ≤ 3
d(n+ 1)/4e if 5 ≤ n ≤ 17
0 if 18 ≤ n ≤ 19
(n/n) if 20 ≤ n ≤ 35
d(n− 9)/20e if 36 ≤ n ≤ 51

(6.34)

In this function, n represents the time in minutes, which is used to calculate a and a
represents the amount of process instance requests which will be sent to ViePEP. Between
each bunch of a requests we assign a waiting period of 60 seconds. It remains to mention
that for repeated evaluation runs, the same order of process models in the queue is
applied in order to generate reproducible results.

Notably, in contrast to our former evaluations (Section 4.5 and Section 5.4), we
reduced the total amount of requested process instances. However, contrary to before,
we choose 10 process models of different complexities. In addition, we choose 10 different
software services which need to be invoked, each needing a different amount of CPU and
RAM. The result is many-faceted realistic evaluation scenario.

The arrival patterns are depicted in Figure 6.3-6.4.

Baseline

To compare our optimization approach against a baseline, we apply a basic strategy
for resource provisioning and scheduling which is based on existing work on process
scheduling [36, 39, 69]. It should be noted that we adapted the strategy slightly to fit
our basic assumption that service instances may be shared simultaneously among process
instances and that Backend VMs host only one particular service instance but there
might be several concurrent service invocations.

Applying the baseline strategy (X-VM for Each), ViePEP leases a new quad-core
Backend VM for a particular service type once the workload on a particular VM is above
an upper threshold of 80%. The VM is released again once the workload is below a lower
threshold of 20%. These values have been chosen based on experiences collected in our
former evaluations from Section 4.5.4 and Section 5.4.2 and from our former work [99]:
The 20% lower threshold was chosen due the fact that the OS needs up to 15%, which
means, a overall system load of less than 20% means that there are only few service
invocations running, and the VM is not needed anymore. The 80% upper threshold has
been chosen to be able to handle unexpected deviations of needed resources for running
service invocations. However, this does not mean that a VM will not be used 100%.

Hence, there might be several VMs for the same service type. This approach applies
a basic scheduling of process instances and in addition takes into account the near future,
i.e., VMs are leased for a fixed period which allows to pre-pone future steps in order to
use leased resources more efficiently. Further, the baseline also considers the deadline, i.e.,
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process instances with an earlier deadline have to be enacted before processes instances
with a later deadline.

6.4.3 Metrics

To assess the quality of our optimization approach, we use different metrics. For all
numbers, we also calculate the standard deviation σ. Since our optimization problem
aims at cost minimization, comparing the total cost arising from VM leasing and penalties
is an obvious option. First we compute the amount of Max. Active Cores, then, we apply
the following cost model: We assume that it is cheaper to lease a quad-core VM than 4
single-core VMs (respectively a dual-core VM is cheaper than 2 single-cores, etc.). We
apply a linear penalty cost model based on [69]: We assign 1 unit of penalty cost per 10%
of time units of delay. Penalty cost and VM leasing cost over the runtime of all process
instances result in the Total Cost metric. Second, we measure the SLA Adherence, i.e.,
the percentage of process requests which have been fulfilled on time. Third, we measure
the overall duration to process all requests (Total Makespan), starting with the point of
time when the first request arrives and stopping once all service invocations have been
finished.

6.4.4 Results and Discussion

In order to get representative numbers, each scenario (with the SIPP model and the
baseline, with lenient and strict SLAs) was executed 3 times over a timespan of 7 days.
This has been done to avoid corruption of results due to differing base loads in the
OpenStack-based cloud testbed. While Table 6.5 and Table 6.6 presents the average of
the conducted evaluation runs including their standard deviations as numbers, Figure 6.3
and Figure 6.4 show the results as charts. For each chart, on the horizontal axis, the
time in minutes is presented, on the left vertical axis the amount of active (CPU) cores is
shown and on the right vertical axis, the amount of parallel process requests is presented.
It remains to mention that while the metric Total Makespan in Minutes in Table 6.5 and
Table 6.6 represents the time of executing all process requests, the Time in Minutes in
Figure 6.3 and Figure 6.4 shows the timespan of leasing the first VM until releasing the
last one.

First, we discuss the Constant Arrival scenario for both SLA levels, lenient and strict.
As it can be seen in Table 6.5, the SLA adherence using our optimization approach is
always above 94.0% (with a rather small standard deviation of 2.0%). This means, our
optimization approach was capable of detecting potential shortcomings in time, and
rescheduled the service invocations. However, the few SLA violations can be reduced to
the fact that it may be cheaper in some situations to accept a short delay than leasing
additional VMs.

The SLA adherence for the baseline is much lower: As the numbers show, almost a
third of the process requests were delayed resulting in four times higher penalty cost
(42.67) than using our SIPP model (10.0) for the strict SLA level. The low amount of
penalty cost for SIPP can be explained by our leasing and releasing policy, i.e., we try to
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Figure 6.3: Evaluation Results – Constant Arrival

lease exactly as many resources as needed, while the baseline leases additional resources
ad hoc, i.e., when a specific threshold has been reached.

The fact that by applying the baseline each time a new quad-core VM was leased,
resulted in much higher cost, namely in average 41.66% higher than applying the SIPP
model. Comparing the overall makespans, we see that the difference between lenient
and strict SLA levels for the baseline can be neglected, i.e., 22.67 vs. 25.67 minutes.
Comparing these numbers, we see that the baseline was even faster than our approach.
This is due to the fact that leasing a quad-core VM allows much more service invocations
at a certain point of time. However, due to the limited amount of requested process
instances, the leased resources were not fully utilized, but have to be paid for the full
BTU. This can be seen in Figure 6.3a and Figure 6.3b around minute 25, i.e., the amount
of leased CPUs literally falls from 40 to 0, compared to our approach, where releasing
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Figure 6.4: Evaluation Results – Pyramid Arrival

resources follows more a step-like function.
Second, we discuss the Pyramid Arrival scenario (see Table 6.6). Again, using our

approach, we achieve a close to 100% SLA adherence, thus we can assume that the
scheduling plan created by the SIPP model considered all given SLAs and assigned
the service invocations accordingly. The fact that the baseline with a strict SLA level
ended up in more than 30% SLA violations, can be linked to the leasing and releasing
policy of cloud-based computational resources, i.e., in the baseline scenario, cloud-based
computational resources are leased or released based on a threshold. Comparing the
baseline with our approach with regard to the time, the overall makespan for our approach
is lower in every case, however, less resources are needed as our SIPP is able to distinguish
what types of VMs are needed, i.e., whether a single-, dual-, triple-, or quad-core Backend
VM should be leased.
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Table 6.5: Evaluation Results – Constant Arrival

Arrival Pattern Constant Arrival
SIPP Baseline

SLA Level Strict Lenient Strict Lenient
Number of total
Process Requests 50

Interval between the
Process Request 120 seconds

Number of parallel
Process Requests y = 5

SLA Adherence in %
(Standard Deviation)

94.0
(σ=2.0)

96.0
(σ=2.0)

68.66
(σ=18.33)

92.66
(σ=1.55)

Total Makespan in Minutes
(Standard Deviation)

23.33
(σ=0.58)

31.33
(σ=4.51)

22.67
(σ=1.15)

25.67
(σ=2.89)

Max. Active Cores
(Standard Deviation)

37
(σ=4.36)

22.33
(σ=7.36)

40
(σ=6.06)

36
(σ=3.19)

Leasing Cost
(Standard Deviation)

1136.0
(σ=80.88)

780.0
(σ=78.0)

1738.33
(σ=20.21)

1493.33
(σ=40.41)

Penalty Cost
(Standard Deviation)

10.0
(σ=3.61)

5.33
(σ=4.93)

42.67
(σ=15.31)

7.0
(σ=4.36)

Total Cost
(Standard Deviation)

1146.0
(σ=82.66)

785.33
(σ=81.13)

1781.0
(σ=18.74)

1500.33
(σ=38.89)

Notably, the SLA adherence for the strict and lenient SLA levels differ for the SIPP.
The evaluation shows that applying stricter SLAs requires more resources in less time.
This can perfectly be seen in Figure 6.4a-6.4b. Since a higher-cored VM is comparably
cheaper than several lower-cored ones, they are more likely to be leased when a strict
SLA is applied (see Figure 6.4a) as more invocations have to be processed in shorter
time. Since this enables a faster invocation of the process instances, we observe a smaller
number of SLA violations. Comparing this to the lenient SLAs (see Figure 6.4b), we see
that less resources are acquired at the beginning. Due to that, and since our services
mirror real-world services where the CPU load and execution time is not deterministic,
we experience a few SLA violations (∼1%), which is acceptable by the definition of our
SIPP model.

While we can not compare the numbers from this evaluation directly with the results
from the evaluation runs from the former chapters, we can see that following a reasoning
only approach (i.e., from Chapter 4) we could save -3.79% cost and were approximately
6.71% minutes faster than the baseline. In our later approach, i.e., a simple optimization
approach realized using an heuristic for sequential elastic processes (i.e., from Chapter 5),
we were able to save in average 19.56% cost and were 24.13% faster than the baseline.
Within this chapter we achieved even better values: By using the SIPP approach, we
were able to reduce the overall cost by 41.66% for the constant arrival pattern and 36.86%
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Table 6.6: Evaluation Results – Pyramid Arrival

Arrival Pattern Pyramid Arrival
SIPP Baseline

SLA Level Strict Lenient Strict Lenient
Number of total
Process Requests 100

Interval between the
Process Request 60 seconds

Number of parallel
Process Requests

f(n)
(see (6.34))

SLA Adherence in %
(Standard Deviation)

100.0
(σ=0.0)

99.67
(σ=0.58)

67.33
(σ=3.06)

96.33
(σ=0.58)

Total Makespan in Minutes
(Standard Deviation)

58.67
(σ=2.52)

57.67
(σ=0.58)

57.0
(σ=0.0)

53.33
(σ=1.15)

Max. Active Cores
(Standard Deviation)

40
(σ=10.83)

37.33
(σ=10.76)

40
(σ=7.79)

40
(σ=7.79)

Leasing Cost
(Standard Deviation)

2339.33
(σ=226.89)

2176.33
(σ=268.59)

3628.33
(σ=40.41)

3430.0
(σ=121.24)

Penalty Cost
(Standard Deviation)

0.0
(σ=0.0)

0.33
(σ=0.58)

88.0
(σ=18.36)

7.33
(σ=3.21)

Total Cost
(Standard Deviation)

2339.33
(σ=226.89)

2176.67
(σ=268.78)

3716.33
(σ=37.55)

3437.33
(σ=124.42)

for the pyramid arrival pattern. However, the baseline achieved a shorter total makespan
(in average 9.18% faster). Hence, it can be deducted that leasing of additional resources
in an ad hoc manner may end up in faster process enactments, but will also result in
higher cost, since resources are always leased for a defined BTU. Thus, the resources
have to be paid, but may not be needed later on.

In addition, our evaluations have shown that using an optimization model for creating
a scheduling plan for complex process patterns will create much lower cost than using
an ad hoc approach. Although a MILP solver is used to find an optimal solution to
such problems, having real-world factors in the evaluation, such as a fluctuation of
resource usage, the overall outcome will always be affected. However, the fact that we
experienced less than 5% of SLA violations and an average cost improvement of almost
40% definitely shows that using an optimization model for scheduling service instances
and their invocations among cloud-based computational resources should always be
preferred over an ad hoc approach.
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6.5 Conclusion
Using cloud-based computational resources to enact business processes seems to be an
obvious choice. However, there is still a lack of BPMS frameworks which are able to lease
and release resources for process enactment in a cost- and time-efficient manner. Within
this chapter we made the following contributions:

• We defined a system model needed for complex elastic process enactments, i.e., a
system model taking into account sequences as well as complex process patterns
(XOR-blocks, AND-blocks and Repeat loops). In addition, we considered penalties
and the BTU.

• We defined the SIPP, a multi-objective optimization model to achieve complex
process scheduling. The SIPP model is meant to minimize the total cost arising
from resource leasing cost and potential penalty cost.

• We presented ViePEP 2.0 and integrated the SIPP.

• We evaluated our approach extensively and showed its advantages over ad hoc-based
resource scalling and process scheduling.

In the next chapter (Chapter 7) we will extend this model and consider the problems
and challenges which apply when enacting complex elastic processes in an hybrid cloud
environment.
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CHAPTER 7
Cost-based Optimization for
Complex Elastic Processes in

Hybrid Clouds

So far, we presented two different approaches for utilizing cloud-based computational
resources in order to enact sequential elastic processes (see Chapter 4 and Chapter 5). We
have shown that using a basic scheduling algorithm can achieve cost savings compared to
ad hoc scaling baselines. However, since sequential processes are only a small subset of
real-world business processes we considered in the last chapter (see Chapter 6) complex
elastic processes and presented a multi-objective optimization model called the SIPP.
By solving this model, we were able to use cloud-based computational resources for
complex elastic process enactment in a cost-efficient way. In order to evaluate this model,
we created ViePEP 2.0 (Section 6.4.1). So far, only a single cloud provider has been
considered. However, leasing resources only from one cloud provider is rather restrictive
as cloud providers may offer different resources with various configurations to different
prices. By allowing ViePEP to lease resources from a hybrid cloud, i.e., a combination
from private as well as public clouds, more different resources (i.e., different VM types
for different prices) can be leased which could lead to a better overall performance
and decreases the risk of vendor lock-in. However, scheduling business processes in a
hybrid cloud environment is more complicated as several additional aspects need to be
considered.

Hence, in this chapter we substantially extend the work from Chapter 6 by the
following:

• We extend the system model for complex elastic process scheduling in order to be
able to lease resources and schedule services invocations in a hybrid cloud.
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• Doing this, we extend the SIPP model and consider data transfer time and data
transfer cost.

• We extend ViePEP 2.0 in order to allow leasing resources from multiple cloud
providers.

• We implement the extended SIPP model into ViePEP 2.0.

• We evaluate this new approach extensively and compare its results against a baseline
following ad hoc-based scaling.

The remainder of this chapter is structured as follows: We start with a motivational
scenario in Section 7.1 and state different prerequisites for our approach in Section 7.2.
Afterwards, we present our scheduling approach in Section 7.3. In Section 7.4, our solution
is evaluated using a testbed-driven approach using ViePEP 2.0 (see Section 6.4.1). Last
but not least, Section 7.5 concludes the chapter.

7.1 Example Scenario

In this section, we provide an example scenario to motivate the contribution presented
in this chapter. As in Section 2.3.3, we consider a scenario from the financial industrial
sector [64], e.g., an international bank. Notably, the magnitude of the process landscape
and the strict process execution deadlines can be also found in other domains, e.g., the
manufacturing domain [96] as the manufacturing industry is currently undergoing a
massive transition towards more effective and interconnected factories [29].

The considered bank features several worldwide distributed branches, i.e., from the
US East Cost over Europe to Asia. Each branch of this bank provides similar products
to their customers, hence, the bank maintains a private cloud spanning all data centers
of the single branches. In addition, each branch has access to similar business process
models which are used within the bank’s products and services. The single branches can
lease resources from this private cloud for a particular time span (BTU) and execute their
business processes. Resources need to be paid according to the BTU, hence, a major
objective is to achieve cost-efficiency. This includes an optimal process enactment of the
corresponding business processes and an optimal resource leasing policies.

The available business processes contain different services which range from short, but
resource intensive operations to long-running analytic processes. Figure 7.1 represents
one exemplary business process which is composed of five steps (Step1 – Step5). In order
to enact this process model, five corresponding software-based services need to be invoked
(S1 – S5). The services deal with complex computations and their results have to be
transferred from one service to the next one. This transfer requires time that has to be
considered by the BPMS.

The maintained private cloud provides computational resources which are sufficient
to instantiate all software-based services in off-peak times. However, during peak times,
when there are numerous parallel process enactments, it is required to lease additional
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Figure 7.1: Example Scenario

resources from a public cloud to cope with the resource requirements for the services.
Figure 7.1 represents a snapshot regarding the resource allocation for a peak time scenario,
where services S1, S2 and S3 are deployed using cloud-based computational resources
leased from the private cloud and services S4 and S5 are deployed on resources leased from
the public cloud since there are too little resources on the private cloud. The data transfer
capabilities within one cloud are very good, so that data transfer of date only requires a
short period of time. In contrast, the transfer capabilities between the private cloud and
the public cloud are limited, since they are routed over the Internet. These inter-cloud
data transfers also issue data transfer cost [1]. They are marked with the exclamation
marks in Figure 7.1 and the goal is to reduce or avoid these costly data transfers during
process enactment. Since the in-time completion of the process executions is vital for a
cost-efficient process enactments, each process execution is assigned with a deadline and
when a process execution does not meet this deadline, penalty cost accrue.

7.2 Preliminaries

Based on the example scenario, we define some preliminaries to realize a data transfer
aware scheduling and resource provisioning approach in hybrid clouds. We extend in
this chapter the SIPP model from Section 6.3, hence, we refer to the preliminaries from
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Section 6.2. Notably, altough the original SIPP model was conceptualized for a private
cloud setting and so far neither considers hybrid clouds nor any data transfer aspects, the
underlying preliminaries remain the same for the extension mentioned in this chapter.

As already stated in the example scenario, we consider a hybrid cloud that is composed
of a private cloud and a public cloud hosted in two geographically different locations.
The BPMS is deployed in the private cloud and covers both the functionalities of a
BPMS and of a cloud controller. Although both, the private and the public cloud, are
capable of hosting all service types, we assume that the private cloud should be utilized
first as its running cost, e.g., energy cost or maintenance cost, are cheaper compared
to the leasing cost for the VMs in the public cloud. Therefore, the natural goal of the
optimization model is to achieve a high resource utilization of the private cloud before
leasing VMs from the public cloud. In general, we only consider inter-cloud data transfer
in terms of data transfer cost, as intra-cloud data transfers are free of charge [1]. However,
intra-cloud data transfer also takes some time, which has to be considered. Further, we
assume that every service instance maintains its own data repository and that data is
only transferred on a process step to process step communication basis.

7.3 Process Scheduling in Hybrid Clouds

Based on the discussed preliminaries, we are now able to define our elastic process
scheduling approach. For this, we first present how to extend the SIPP model from
Section 6.3.2. Afterwards, we extend the scheduling problem to also support hybrid
clouds while considering data transfer aspects.

7.3.1 Extending the Service Instance Placement Problem (SIPP)

To execute elastic processes, software services are deployed on cloud-based computational
resources, i.e., VMs. Companies often suffer from the provisioning problem, i.e., the
challenge to lease enough resources to handle peak loads but prevent over-provisioning
during off-peak times. Hemce, the challenge is to lease as little resources as needed while
still satisfying a certain level of QoS. In order to satisfy these aspects, we defined a
system model and an optimization model which is aiming at minimizing the total leasing
cost for cloud-based computational resources, potential penalty cost (see Section 6.3.1)
and through our extension: data transfer cost. Besides of minimizing the cost, the most
important outcome of the optimization problem is an assignment of service invocations
to computational resources, i.e., VMs, in an optimal manner. The SIPP model, including
all its constraints, variable definitions and utility functions is described in more detail in
Section 6.3 and a table of used variables can additionally be found in Table 6.2.
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7.3.2 Optimization Model

min
∑
v∈V

cv · γ(v,t)

+
∑
p∈P

∑
ip∈Ip

cpip · e
p
ip

+
∑
v∈V

∑
kv∈Kv

(ωCf · fCkv
+ ωRf · fRkv

)

−
∑
p∈P

∑
ip∈Ip

∑
jip∈J∗

ip

1
DLip − τt

x(jip ,kv ,t)

+ CD

(7.1)

Equation (7.1) shows the main objective of the extended SIPP model. The main objective
function comprises five terms. The first four terms form are from the original SIPP model
from Section 6.3.2 and are shortly summarized in the following. The fifth term, i.e., CD
is an extension to the SIPP, i.e., this term is dedicated to enable and optimize hybrid
cloud deployment of service instances and their invocations, which is explained in detail
in Section 7.3.3.

The first term in (7.1) computes the total cost accruing due to leasing γ(v,t) VMs of
type v in a certain leasing period τt. The second term computes the cost which may
accrue if deadlines are violated, i.e., penalty cost which have to be paid for delayed
process instances. For computing these penalties we apply a linear penalty function as
described in [69]. This means that each process instance includes defined penalty cost
cpip which are due if the process instance gets delayed. This value is multiplied with
the actual period of time epip for which the process instance is delayed. The third term
in the equation is used to consider the cost of wasted resources, i.e., the sum of free
resource capacities fCkv

and fRkv
in terms of CPU and RAM. The fourth term is used to

compute the urgency of process instances, i.e., we subtract the current period in time
τt from the deadlines DLip and compute the corresponding reciprocal value. This way,
a process instance having a closer deadline is assigned with a higher priority since the
value 1

DLip−τt
gets larger.

7.3.3 Scheduling Elastic Processes in Hybrid Clouds

Usually, private clouds provide a fixed amount of computational resources and therefore
suffer from over- and under-provisioning. Having this problem in mind, many companies
choose to extend their private cloud with a public cloud to be able to lease virtually
unlimited additional resources to deploy resource-intensive services [13, 106].

The proposed optimization model from (7.3.2) is able to optimize the scheduling and
placement of service invocations on computational resources provided by a single cloud
(independent from the fact whether it is either a private or a public cloud). However, the
support of hybrid clouds raises additional challenges especially in terms of data transfer,
i.e., the duration needed to transfer data and the cost which accrue when a large amount
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of data is moved from or into a cloud. In order to address these challenges, we extended
the original SIPP model in (7.1) with the fifth term CD. This, and additional constraints
and utility functions (Equations (7.2)-(7.6)) are explained in the following.

Data Transfer Cost

First we consider the data transfer cost, which are represented by the new variable
CD (see (7.4)). This variable represents all data transfer cost which are issued by the
inter-cloud data transmission between currently running respectively already finished
process steps and future process steps that are currently considered in the scheduling
plan.

To distinguish between private cloud VMs and public cloud VMs, we extend the
concept of the VM variable Kv: We introduce two subtypes of this variable, Kvpriv

which represents VMs in the private cloud and Kvpub
which represents VMs in the

public cloud. Since the original system model of SIPP does not consider any data
transfer between two sequenced process steps, we introduce the additional variables:
jpastip

∈ Jpastip
= {1, ..., jpast

#

ip
}. Variable Jpastip

represents the set of all process steps, and
jpastip

one particular process step, which is/are currently running or have already been
completed to determine whether two adjoining process steps issue any data transfer cost.
Two successive process steps can follow four different deployment scenarios: In the first
two scenarios both process steps are either deployed in the private cloud or in the public
cloud. As intra-cloud data transfer is free of charge, no data transfer cost will accrue
within this scenario. In contrast to that, in the two remaining deployment scenarios, the
predecessor step can either be deployed in the private cloud and the successor step in the
public cloud or vice versa. Within this scenario, data transfer cost will accrue and have
to be considered.

The actual deployment situation is evaluated using the utility function l(jpastip
, j∗ip)

(see (7.2)). In case a scheduling plan consists of a deployment spanning across private
and public clouds, we assign data transfer cost based on the output result size of the first
task, since hosting providers usually only charge for outgoing data transfer (see (7.3)).
In any other case, we assign no data transfer cost. These individual transfer cost C#

Djip

are accumulated by an additional constraint (see (7.4)) to be considered for the overall
optimization objective (see (7.1)) as CD.

l(jpastip
, j∗ip) =



0, if k1, k2 ∈ Kvpriv , x(jpast
ip

,k1,t),

x(j∗
ip
,k2,t)

0, if k1, k2 ∈ Kvpub
, x(jpast

ip
,k1,t),

x(j∗
ip
,k2,t)

1, else

(7.2)
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C#
Djip

=

CDjip
, if l(jpastip

, j∗ip) = 1
0 , else

(7.3)

∑
v∈V

∑
k∈Kv

∑
jip∈Jip

x(jip ,kv ,t) ∗ C
#
Djip
≤ CD (7.4)

Collocation of Service Invocations

The amount of accruing data transfer cost depends on the service type in combination
with the deployment location, i.e., whether it is deployed in the public or private cloud.
Using this information, the collocation of successive service invocations is realized based
on the data transfer cost constraints in an implicit manner, as the objective function
aims at minimizing the overall cost.

Selective Usage of Public Resources

To implement the conditional usage of the public cloud, we introduce the utility function
u (see (7.5)) and the functionality to assign the future leasing cost for the VMs leased
from the public cloud based on the current usage of the private cloud. The utility
function u sums up the cores of all currently leased private VMs. In order to have a
VM-independent resource usage calculation function, the usage calculation is carried out
on the basis of VM cores. As long as the usage of the private cloud is below 70%, the
leasing cost of the public VMs are multiplied with 100 to make them a non-desirable
option for the scheduling plan (see (7.6)). The concrete figure of 70% was chosen in order
to achieve a high resource utilization for the private cloud, while maintaining necessary
reserves in case of VM failures to achieve a data transfer optimized scheduling plan, even
if some VMs have to be replaced [125].

u =
∑

kv∈Kvi

core(g(kvpriv , t)) (7.5)

cvex =


cvex , if u >

( ∑
kv∈Kvi

core(kvpriv )
)
∗ 0.7

cvex ∗ 100 , else
(7.6)

This constraint does not completely rule out the usage of VMs provided by the public
cloud, since the scheduling plan may require a specific type of a VM, which is currently
not available in the private cloud and an expensive VM may be a better option than
paying penalty cost. Nevertheless, since the cost are higher than for the private resources,
the selection of such an expensive VM is unlikely. In general, we assign leasing cost for
the private cloud as well as the public cloud. The cost structure for the private cloud
enables us to implement a fine-grained selection of different VM types to use the private
cloud as efficient as possible.
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7.4 Evaluation

For evaluating our scheduling and provisioning approach we made use of ViePEP 2.0 from
Section 6.4.1. As ViePEP was originally designed for a single private cloud environment,
we implemented an extension allowing to lease VMs from an Openstack-based cloud1

as well as from Amazon EC2 (AWS)2. While the private cloud is restricted in terms of
computational resources, the public cloud provides virtually unlimited resources. The
BTU for both clouds is set to 5 minutes.

On the one hand ViePEP operates on a PaaS level and accepts new process instance
requests and on the other hand it operates on the IaaS level to lease and release
computational resources in order to enact the requested process instances. Further,
ViePEP makes use of IBM CPLEX 3 for solving the SIPP model. The result is a full
scheduling and resource allocation plan, i.e., a scheduling plan telling on which VM
instance a particular service instance has to be invoked in order to fulfill certain steps of
a particular process instance.

In the following subsections, we first present the evaluation setup in Section 7.4.1.
Afterwards, we present the quantitative evaluation including a discussion in Section 7.4.2.

7.4.1 Evaluation Setup

Process Models

We select 10 representative process models from the SAP reference model [25] to perform
realistic evaluations. Notably, these are the same 10 process models as used in Section 6.4.2.
The 10 selected process models can be found in Appendix B. The SAP reference model
has been evaluated and used for many scientific papers, e.g., [80] and provides a solid
basis for our evaluation. The selected process models are composed from different process
patterns and different levels of complexity, i.e., the process models may be composed
of AND-block, XOR-block or Repeat loops. The former two types consist of a split
(AND, XOR) and the appropriate merge pattern, which either is blocking (AND-block)
or simply continues the process execution, as soon as 1 optional process step is completed
(XOR-block).

Test bed

As in our previous evaluation (Section 6.4) we simulated 10 different software services,
each needing a different amount of computational resources and makespan. In this
chapter we extend our approach by considering data transfer time and cost. In order to
force service deployment on computational resources leased from the public cloud as well,
we updated the simulated services. Hence, the simulated services differ from the services
used in Section 6.4.

1http://www.openstack.org/software/folsom/
2http://aws.amazon.com/ec2/
3http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 7.1: Service Types

Service Type No. CPU Load in % Makespan in sec. Outgoing data
(µcpu) (µmakespan) cost

1 50 30 2
2 75 80 4
3 75 120 6
4 100 20 2
5 120 100 4
6 125 30 6
7 150 40 2
8 175 20 4
9 250 60 6
10 310 30 2

Table 7.1 provides a detailed overview about the 10 simulated service types. The
table states the required mean CPU load in percent, the mean makespan in seconds, and
the size of outgoing data in cost units. The services’ CPU load describes the required
amount of CPU in percent on a single-core VM. If a service is deployed on a multi-core
VM, the load is equally distributed among all of them, i.e., we assume that each service
is fully parallelizable. This leads to the fact that only the first 3 services of Table 7.1 can
be deployed on a single-core VM. All other services require at least a dual-core VM or an
even larger one. Notably, with an increasing number of CPU cores, the makespan remains
the same. For generating the CPU load, we use the lookbusy load generator4. This is a
configurable tool to generate CPU load on a VM for a given timespan and enables us to
simulate the resource consumption. The values µcpu and µmakespan provided in Table 7.1
represent mean values of 2 general normal distributions where we assume σ1 = µcpu/10
respectively σ2 = µmakespan/10. ViePEP is able to lease 7 different VM types: 4 VM
types from the private Openstack-based cloud, and 3 VM types from Amazon EC2 public
cloud.

Applied SLAs

As in our former evaluation, we applied each process instance with a SLA which defines
the process’ deadline, i.e., the latest point of time when the process instance has to be
finished. To evaluate the applicability of our approach, we choose two different SLA
scenarios as used in Section 6.4. First, we apply a strict scenario, i.e., the deadline is
defined by 1.5 times the process model’s average makespan. Second, we apply a lenient
scenario, i.e., the deadline is defined by 2.5 times the process model’s average makespan.
The two values were chosen due to the fact that VM instances require some time for the
deployment of the services and individual VM instances may fail, so that ViePEP has to
lease replacement VMs which affects the overall process execution negatively.

4http://devin.com/lookbusy/
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Process Request Arrival Pattern

Again, we apply two different process request arrival patterns: First, we follow a constant
request pattern, for which we select 7 process models every 120 seconds. In order to vary
the process models, we create different instances based on the round-robin principle, i.e.,
in the first round process models 1 to 7 are requested, in the next round 8 to 10 and 1 to
4, and so on. This is repeated until a total of 70 process instances are requested in a
time frame of about 20 minutes.

The second request pattern follows a pyramid-like function, which is represented by
(7.7). Variable a represents the amount of process instance requests at the single points
of time n every 120 seconds. Notably, this request pattern differs from the pyramid
arrival pattern from Section 5.4.1: we changed this arrival pattern in order to lease
resources from both clouds, the private as well as from the public cloud. The actual
process selection aims for a realistic distribution among common and rare process models.
To achieve this variable distribution, we start for every new request batch with process
number 1 and increment the process number to match the amount of process requests.
The second request pattern issues in total 118 process instances within a time frame of
48 minutes.

f(n) =



a = n if 0 ≤ n ≤ 5
a = n/2 if n = 6
a = 1 if 7 ≤ n ≤ 10
a = n− 10 if 11 ≤ n ≤ 19
a = 10 if 20 ≤ n ≤ 24

(7.7)

Baseline for the Evaluation

As in our former evaluations (Section 4.5-6.4), we compare our evaluation results against
a baseline which follows a basic ad hoc-based scheduling and resources provisioning
strategy [36]: As soon as a service instance needs to be invoked and no VM instance
hosting a specific service is available, a new VM will be instantiated. In this evaluation, a
new quad-core VM is leased and the corresponding service type is deployed. In addition,
to prevent under-provisioning, an additional quad-core VM will be leased and the needed
service type will be deployed, if a VM instance’s resource utilization level reaches 80%.
If a VM instance’s resource load is below 20%, the VM instance will be released as soon
as all service invocations on this VM have been finished. Within the baseline, VMs are
equally instantiated from the public as well as from the private cloud without considering
any data transfer aspects. Nevertheless, all restrictions applied to the SIPP model, like
only 1 service type per VM, QoS constraints, i.e., the given deadline, and the issued cost
are also applied for the baseline approach.
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Metrics

To assess the performance of our scheduling approach, we apply similar metrics as used
prior in Section 6.4: First, the Total Makespan in Minutes is measured, i.e., the overall
timespan from the first process instance request until the successful termination of the
last process step of the last process instance. Second, the Total Cost are computed. For
that, we first compute the amount of maxium leased CPU cores (Max. Active Cores).
Second, contrary to our former evaluations, the total cost are now composed from Private
Leasing Cost representing the leasing cost for the private cloud, Public Leasing Cost
which represent the leasing cost for the public cloud and Data Transfer Cost which are
charged for transferring data across the different clouds. In addition, the Total Cost also
include Penalty Cost which accrue if a process instance is delayed. For that, we apply
according to the delay, 1 cost unit penalty for every 10% of the overall makespan of the
process model. We further assess the SLA Adherence, i.e., the percentage of process
executions which are compliant with their SLA.

To receive significant data, we perform three iterations for each process request
pattern combined with the two different SLA levels resulting in a total of 12 runs for our
approach as well as 12 for the baseline.

7.4.2 Results and Discussion

The following section presents and discusses the results of our evaluation by listing all key
metrics in Table 7.2 for the constant request pattern and in Table 7.3 for the pyramid
request pattern. A graphical representation can be found in Figure 7.2 for the constant
request pattern and in Figure 7.3 for the pyramid request pattern. Notably, the numbers
in the table, as well as the numbers below in the discussion represent the mean value
over the three runs. The standard deviation σ is also presented in the tables.

First we discuss the constant request pattern for both SLA scenarios (see Table 7.2):
The most prominent difference between the baseline and our extended SIPP approach are
the higher total cost for the baseline approach. Using the extended SIPP model we were
able to achieve total savings in terms of cost of 61.38% for the lenient SLA scenario and
for the strict scenario total savings of 45.70%. As it can be seen in Table 7.2, the leasing
cost represent the major part of the overall cost. Overall, in our approach, less VMs from
the public cloud were leased leading to significant smaller leasing cost. These results
show that the selective usage of public resources works as intended and the extended
SIPP only leases public resources when they are required to comply with the SLA. This
has a large impact on the overall data transfer cost. The baseline issued about 14 times
as much data transfer cost which represent almost a third of its total cost, i.e., 26% for
the strict SLA scenario and 40% for the lenient one. Compared to our approach, where
data transfer cost amounts to only 4.9% of the total cost for the strict scenario (and
none for the lenient one). While observing the SLA adherence, we see that hardly any
SLAs are violated in the constant request pattern. The fact that we experienced no
SLA violations in the strict scenario for our approach, can be reduced to the fact that
the overall deadlines are close which results in a higher risk of delay compared to the
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Figure 7.2: Evaluation Results – Constant Arrival

lenient scenario. As penalty cost are an important factor, closer deadlines force earlier
scheduling. If a VM is already leased, the SIPP model aims at reducing wasting resources,
hence, future process instances are pre-poned.

Next to the SLA adherence it remains to discuss the overall makespan: In general,
the strict scenario finishes faster than the lenient one, and further, the baseline finishes
faster than our approach. This can be reduced to the fact that the baseline leases more
VMs, hence, has more resources available and is able to perform more service invocations
in parallel. In contrast, the extended SIPP only leases additional resources when they
are cost-efficient in respect to the penalty cost model. However, although the baseline
was faster than the extended SIPP, it also results in much higher cost (∼2.1 times).

Second, we discuss the pyramid request pattern where 48 additional process instances
were requested (see Table 7.3). Due to the nature of this request pattern, both approaches
had to lease in total more resources than in the constant request pattern leading to
higher leasing cost of both, public VMs and private VMs. Interesting to see is the ratio
between data transfer cost and leasing cost: For our approach, this ratio amounts to
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Figure 7.3: Evaluation Results – Pyramid Arrival

6.7% for the strict SLA and 5.1% for the lenient one. For the baseline it is ∼25% for
both scenarios, i.e., for the strict SLA scenario and the lenient SLA scenario. This means
that our approach preferred to schedule service invocations within the same cloud over
switching between the public and private cloud. As the baseline does not consider any
data transfer cost for its scheduling plan, it results in much higher cost. Due to the used
penalty cost model, the overall SLA adherence is in general lower (∼57%-86%) compared
to the constant request pattern (∼90%-100%) as penalty cost are comparably cheaper
than leasing additional resources. The reason that we experienced more SLA violations
using the extended SIPP model in the pyramid request pattern than for the constant
request pattern, can be attributed to the fact that in total more process instances are
processed.

The evaluations have shown that the usage of our approach for creating a scheduling
plan which considers leasing cost, penalty cost, and data transfer cost significantly
decreases the overall cost compared to an ad hoc approach. The numbers in Table 7.2
and Table 7.3 reveal that the extended SIPP approach was able to reduce the overall
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Table 7.2: Evaluation Results – Constant Arrival

Constant
Extended SIPP Baseline

SLA Level Strict Lenient Strict Lenient
Number of
Process Requests 70

Interval between
two Process Requests 120 seconds

Number of Parallel
Process Requests y = 7

Total Makespan in Minutes
(Standard Deviation)

26.33
(σ=2.30)

33.00
(σ=3.00)

23.67
(σ=1.15)

32.67
(σ=7.51)

Max. Active Cores
(Standard Deviation)

27.33
(σ=0.81)

27,67
(σ=5.72)

57.33
(σ=16.5)

44.00
(σ=13,74)

SLA Adherence in %
(Standard Deviation)

100.00
(σ=0.00)

90.00
(σ=7.95)

94.76
(σ=6.60)

100.00
(σ=0.00)

Penalty Cost
(Standard Deviation)

0.00
(σ=0.00)

10.33
(σ=8.02)

15.00
(σ=24.24)

0.00
(σ=0.00)

Private Leasing Cost
(Standard Deviation)

963.33
(σ=77.36)

1284.00
(σ=300.39)

1061.67
(σ=20.20)

385.00
(σ=121.24)

Public Leasing Cost
(Standard Deviation)

45.00
(σ=0.00)

0.00
(σ=0.00)

945.00
(σ=242.49)

1061.67
(σ=80.83)

Data Transfer Cost
(Standard Deviation)

52.00
(σ=13.85)

0.00
(σ=0.00)

724.00
(σ=187.06)

937.33
(σ=244.79)

Total Cost
(Standard Deviation)

1060.33
(σ=91.22)

1294.33
(σ=308.39)

2745.67
(σ=474.00)

2384.00
(σ=204.38)

cost by an average of ∼53% for the constant request pattern and an average of ∼40% for
the pyramid request pattern.

To recap, in our former evaluations using the original SIPP model (see Section 6.4.4)
we achieved an overall cost reduction of 41.66% for the constant request pattern and
36.86% for the pyramid request pattern. If we compare these numbers to the results from
this chapter (∼53% for the constant and ∼40% for the pyramid request pattern), we
can see that using the SIPP model should always be preferred over ad hoc scaling when
cost-efficiency should be achieved. However, in terms of overall makespan, the baseline
was again faster than our approach (∼6.78%). Hence, we can conclude that leasing
additional resources in an ad hoc manner will indeed lead to faster process enactments.
However, the offside is that this leads eventually to higher cost.
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Table 7.3: Evaluation Results – Pyramid Arrival

Pyramid
Extended SIPP Baseline

SLA Level Strict Lenient Strict Lenient
Number of Process
Requests 118

Interval between two
Process Requests 120 seconds

Number of Parallel Process
Requests

f(n)
(see Equation (7.7))

Total Makespan in Minutes
(Standard Deviation)

62.00
(σ=2.00)

67.33
(σ=0.59)

58.67
(σ=1.91)

61.67
(σ=2.21)

Max. Active Cores
(Standard Deviation)

51.33
(σ=8.70)

50.67
(σ=11.19)

62,67
(σ=1.91)

62,67
(σ=1.91)

SLA Adherence in %
(Standard Deviation)

57.91
(σ=4.67)

76.27
(σ=5.29)

60.92
(σ=5.06)

86.72
(σ=3.42)

Penalty Cost
(Standard Deviation)

155.33
(σ=34.43)

58.00
(σ=19.28)

123.33
(σ=15.00)

27.33
(σ=9.87)

Private Leasing Cost
(Standard Deviation)

1793.00
(σ=47.70)

1934.67
(σ=199.58)

1458.33
(σ=253.20)

1540.00
(σ=185.20)

Public Leasing Cost
(Standard Deviation)

420.00
(σ=108.17)

548.33
(σ=137.69)

1796.67
(σ=225.02)

1563.33
(σ=359.21)

Data Transfer Cost
(Standard Deviation)

170.67
(σ=94.77)

136.67
(σ=28.94)

1184.67
(σ=193.67)

1051.33
(σ=204.92)

Total Cost
(Standard Deviation)

2539.00
(σ=111.53)

2677.67
(σ=216.15)

4563.00
(σ=153.27)

4182.00
(σ=481.38)

7.5 Conclusion

Within this chapter we have shown that considering data transfer aspects (data transfer
cost and data transfer time) while creating a scheduling plan for hybrid clouds can heavily
reduce the total cost. We made the following contributions in this chapter:

• In order to consider data transfer time and data transfer cost in the SIPP model,
we extended first the underlying system model.

• Afterwards, we extended the SIPP model in order to reduce or avoid data transfer
cost.

• We extended ViePEP 2.0 in order to allow leasing resources from multiple cloud
providers.

• We implemented the extended SIPP model into ViePEP 2.0.
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• We evaluated the extended SIPP model and compared the results against a baseline.

Our evaluations have shown that our optimization model is able to schedule service
invocations among hybrid cloud-based computational resources in a cost-efficient way. It
also does not just reduce the leasing cost but also reduces the data transfer cost compared
to an ad hoc baseline. Using the extended SIPP model we achieved total cost savings of
up to 40%-53%, depending on the process requests.

However, our evaluations have also shown that the cost reduction depends on the
underlying cost model, e.g., we experienced some SLA violations since it was cheaper to
accept a delay instead of leasing additional resources. Based on this insight, we plan to
use different cost models for penalty cost, data transfer cost and leasing cost in our future
work. In addition, up to now we focused on process step to process step communications,
i.e., the output of one process step is directly used as input for the next process step.
However, real-world use cases often incorporate more complex data patterns, like shared
global storage systems. Future evaluations will consider these complex data patters, a
larger set of services as well as different cloud providers.

Another important research area for hybrid clouds are privacy restrictions for service
types or the processed data. These privacy restrictions could either be issued by the
legislation for sensitive data or are based on precautions not to deploy sensitive trade
secrets, e.g., algorithms or customer data, on a public cloud. These constraints require
an extended set of SLAs which have to be considered. For a more fine grained discussion
about future extensions, pleas refer to Section 8.3.
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CHAPTER 8
Conclusions and Future Work

In this final chapter we summarize the main results of this thesis. Section 8.1 presents
the general outcome of the conducted research and describes how the state of the art was
advanced. In Section 8.2 we revisit the research questions from Section 1.2 and analyze
them. Finally, Section 8.3 concludes this thesis and discusses possible future work on
open topics.

8.1 Summary
In this thesis we presented different approaches for business process enactment using
cloud-based computational resources, i.e., we were aiming at realizing elastic processes.
The main contributions in this thesis were implemented in ViePEP. For that, ViePEP
has been completely re-designed and re-implemented, resulting in two new versions, i.e.,
ViePEP 1.1 (see Section 4.2) and ViePEP 2.0 (see Section 6.4.1). ViePEP is a BPMS
designed according to the MAPE-K cycle which consists out of monitoring, analyzing,
planning and executing phase. This MAPE-K cycle has been slightly adapted in order
to fit our needs. The main contributions in this thesis can be assigned to the planning
phase:

First, we created a novel approach for using cloud-based computational resources to
enact business processes. On the one hand, the main driving factor was to avoid over-
and under-provisioning of the leased resources at any time. On the other hand, it was
important to provide a certain level of QoS and to ensure SLA adherence. Hence, our
first contribution is that we assigned cloud-based computational resources to process
executions. As we experienced that even the smallest VM might not be fully utilized at
all time, we had a “look into the future”, i.e., we considered future process executions
and pre-poned the corresponding service invocations in order to fully utilize the leased
resources. This allowed us to save cost and reduce the overall process execution time.

Second, we created an optimization model and transformed it into a heuristic-based
algorithm which is able to schedule sequential elastic processes and to assign their service
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invocations to cloud-based computational resources. The main outcome here is two-fold:
(i) a detailed leasing plan which gives information about how many resources are needed at
what point of time, and (ii), a detailed scheduling plan which assigns service invocations
to the leased resources. The heuristic is able to consider different priorities of queued
process instances according to the defined deadlines.

Third, we created a multi-objective optimization model which is able to realize
complex elastic process executions on cloud-based computational resources. This model is
called Service Instance Placement Problem (SIPP) and, as in the former contribution, its
outcome is a detailed scheduling and resource allocation plan. By the nature of complex
business processes, this optimization model has to consider different process patterns
such as branches, joints and loops. Doing so, we arranged a worst case analysis taking the
longest path for AND- and XOR-branches and assigned a maximum amount of possible
Repeat loop iterations. By performing extensive evaluations and comparing the results
against a state of the art baseline, we showed that following this optimization model, we
were able to significantly save cost and execution time while still ensuring the defined
SLAs.

The final contribution in this thesis is an extension to the formerly created optimization
model (i.e., the SIPP) in order to be able to execute complex elastic processes in a hybrid
cloud environment. The main driving factor is the consideration of data transfer aspects
as especially data-intensive tasks may produce additional cost when executed in a hybrid
cloud as cloud providers may account for in- and out-bound traffic. Hence, the extended
SIPP considered a co-location of related tasks within the same data center in order to
reduce the overall traffic. By considering data transfer aspects during the scheduling, we
were able to reduce the overall cost compared to an ad hoc-based scaling baseline.

Beside of the planning phase, the other three phases have also been considered in our
contributions, i.e., the next step in the MAPE-K cycle is to execute the formerly created
scheduling and resource allocation plan. This means, software-based services are invoked
according to this scheduling plan and resources are either leased or released according to
the resource allocation plan.

The other two phases are monitoring and analyzing: As each process step is mapped
to a software-based service, the service invocations are monitored in terms of execution
time and used resources, i.e., the amount of needed RAM and CPU. The monitored data
is analyzed in order to be able to detect SLA violations in time and in order to arrange
countermeasures in time. Hence, the analyzing result is directly used within the planning
phase.

Designing ViePEP according to the MAPE-K cycle allowed us to use cloud-based
computational resources in a cost-efficient way for elastic process enactments. We
considered user-defined SLAs and adjusted the system landscape accordingly in case
of potential violations. The newly created extensions of ViePEP have been evaluated
extensively and compared against baselines which represent the current state of the art.
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8.2 Research Questions Revised
We introduced our research questions in Section 1.2 which guided the work in this thesis.
Hence, in this section, we revisit these questions and provide a summary of how they have
been answered within the context of this work along with limitations of our contributions.
The latter one will be recapped in Section 8.3 in form of possible future work.

Research Question I:
How can cloud-based resources be used for business process management in a

cost-efficient way?

The original version of ViePEP 1.0 (see Section 2.4) was designed to use cloud-based
computational resources for process enactments. However, it was limited in its efficiency
as neither cost nor SLAs have been considered. Hence, in this work, we extended ViePEP
resulting in a fully functional BPMS for elastic process enactments by considering several
aspects including complex process patterns, BTUs and SLAs. Further, by accounting
future process executions during scheduling decisions. By pre-poning future service
invocations, we were able to use the leased resources more efficiently and reduce the
overall cost. However, using the present techniques, only the near known future is taken
into account, i.e., the queued process requests. Using prediction techniques in order to
forecast the arrival of future process requests could lead to more fine grained scheduling
decisions.

Research Question II:
How can leasing cloud-based resource be optimized for enacting complex business

processes?

After we showed how cloud-based computational resources can be used for business
process enactments, we widened our research area and considered complex business
processes. Complex business processes may include different process patterns, such
as XOR-branches, AND-branches or Repeat loops. In order to achieve this, we used
worst-case analysis which consider the longest possible path over the available XOR-
and AND-branches. In addition to that, we provided a maximum value for allowed
Repeat loop iterations. However, beside of worst-case analysis, there are other ways
of how scheduling decisions can be made for complex business process which have not
been considered in this work, e.g., best-case or average-case analysis. In addition to
that, business processes may have additional patterns to the already considered XOR-,
AND-branches and Repeat loops. Examples would be synchronized blocks, multiple
choices, i.e., a complex XOR/AND-branch combinations, implicit terminations, etc.
[107, 109]. Considering them in scheduling and resource optimization will need more
complex analysis and techniques about the process structure.
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Research Question III:
What problems need to be considered when executing complex business processes in a

hybrid cloud environment?

There are several reasons why a single cloud is not sufficient for business process
enactment. For example, a private cloud may only be able to provide a limited amount
of resources, or another cloud provider may offer resources of different types, or simply
the fact that leasing resources from another cloud provider is possibly cheaper. However,
almost every cloud provider charges their user for in- and/or out-bound traffic. This
means, when a hybrid cloud environment is used for elastic process enactment, the
scheduling should take data transfer aspects into account. Exactly this was done and
implemented into ViePEP. While our presented approach is able to reduce the overall
cost (consisting out of leasing, penalty and data transfer cost), it does not consider
any privacy aspects. For example, some process instances may not be allowed to be
executed outside a certain area or country as sensible data is used. In addition, so far,
we considered task-to-task communication, however, in some cases, a shared memory or
a database may be used. Again, for this database different cost and privacy aspects may
apply.

8.3 Future Work

In this thesis we presented several approaches to execute business processes on cloud-
based computational resources, i.e., we showed how to realize elastic process enactments.
However, as already shortly mentioned in Section 8.2, there are still open aspects which
should be considered when enacting elastic processes in the cloud:

• The presented approaches of scheduling and resource optimization would benefit
from a fine grained prediction algorithm of future process requests. The more
precisely we know how many future invocations are expected, the better we are
able to plan ahead and lease the required amount of resources, i.e., lease enough
resources to handle peak loads, and release resources when they are not needed
anymore. Such a prediction function needs to take into account several different
aspects, included (but not limited to): past invocations, irregular events, regular or
scheduled events (e.g., a new IPhone gets announced), etc. [28, 62, 75, 123].

• So far, we considered three different process patterns, AND-branches, XOR-branches
and Repeat loops including their corresponding joins. However, there are several
more complex process patterns available which may be included by customers or
clients. In order to make reliable and efficient scheduling and resource allocation
decisions, these different concepts need to be considered. Examples for such complex
process patterns are: basic control flow patterns, parallel splits, synchronizations,
exclusive choices, simple merges, multi-choices, synchronizing merges, multi-merges
or different loop constructs [107, 109].
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• Scheduling complex business processes requires to make assumptions about the
future process flow in order to be able to know what services need to be invoked next.
There are different ways to do this. So far, we followed a worst-case analysis, i.e.,
we took the longest path of XOR-blocks or AND-blocks, and assigned a maximum
of allowed repetitions for Repeat loops, however, in some cases a best-case or
average-case analysis may lead to better results.

• When enacting business processes in a hybrid cloud environment, a BPMS does
not just have more resources available for its disposal, but also more challenges
need to be tackled. So far, we considered different pricing models from different
cloud providers, as well as data transfer cost, which apply when moving data into
our out of the cloud. However, some services may operate on private or sensitive
data which should not be moved into an arbitrary cloud, for example, hospital
data should always remain in specific country. This fact needs to be considered
during scheduling decisions. In addition, real-world use cases often incorporate
more complex data patterns, like shared global storage memories or systems.

• Last but not least, the presented optimization model in Section 6.3.2 makes use
of a linear pricing model for the VMs. However, cloud providers like Amazon
offer different pricing models for different VM types, depending on their setting.
Hence, in future work, different pricing models for the leasable resources should be
considered as well as an extension to lease spot instances1. Although more variety
of possible resources means scheduling is getting more complex, it also allows to
make more cost-efficient scheduling decisions.

We expect that further work on resource optimization and elastic process enactments
in the cloud will indeed take these aspects into account.

1http://aws.amazon.com/en/ec2/purchasing-options/spot-instances/
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APPENDIX A
Abbreviations

AWS Amazon Web Services

bpel Business Process Execution Language
BPM Business Process Management
BPMS Business Process Management System
BTU Billing Time Unit

DaaS Data as a Service

HaaS Hardware as a Service

IaaS Infrastructure as a Service

MILP Mixed Integer Linear Programming

OLS Ordinary Least Square
OS Operating System

PaaS Platform as a Service

QoS Quality of Service

SaaS Software as a Service
SIPP Service Instance Placement Problem
SLA Service Level Agreement
SLO Service Level Objective
SOA Service Oriented Architecture
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SOC Service Oriented Computing

ViePEP Vienna Platform for Elastic Processes
VM Virtual Machine

WAR Web Application ARchive
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APPENDIX B
Process Model Collection

This chapter lists all process models which are used for the evaluation runs of Chapter 6
and Chapter 7.
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Figure B.1: Process Model 1
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